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Today’s lecture

1 We will review the concepts of sets and functions

2 We will discuss the function x 7→ Ax.

3 We will discuss the concept of a linear transformation, the
properties of linear transformations, examples.

4 We will see how you can solve equations involving linear
transformations using matrix methods.
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Review on sets

Definition

A set is just a collection of elements.

(Typically we are interested
in sets of vectors, which have vectors as elements.) We often
denote sets as lists of elements {x1, x2, . . .}.

Sometimes I’ll write x ∈ S to mean that “x is an element of the
set S .”

Example

We write [
1
1

]
∈ R2

because

[
1
1

]
is a vector in R2.
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Review on functions

We haven’t been using functions very much this far.

That is going
to change.

Definition

Let X and Y be sets (i.e. collections of things) A function from
X to Y is a rule f which assigns to every element x in X a unique
element f (x) in Y . We often write this as f : X → Y . We say
that X is the domain of f and Y is the codomain. The subset
{f (x) : x ∈ X} ⊂ Y is called the range of f . If x ∈ X , then f (x)
is called the image of x .

Example

The rule f : R→ R given by f (x) = sin(x) is a function from R to
R. The range is [−1, 1] ⊂ R, because sin(x) only takes on values
between −1 and 1, and it takes on all those values.
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Properties of the product Ax

Definition

Let A be an m × n matrix and x be a vector in Rn. Then Ax is a
vector in Rm equal to the linear combination of the columns of A
using the entries of x as entries.

Remember we recorded some nice facts about the product Ax:

Fact

1 If x, y are vectors in Rn, then A(x + y) = Ax + Ay

2 If x is a vector in Rn and c is a scalar (real number), then
A(cx) = c(Ax)

These two facts show that the function f : Rn → Rm given by
x 7→ Ax is linear in a certain sense.
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Linear transformations: definition

Definition

Let T : Rn → Rm be a function between two vector spaces.

We
say that T is linear if

1 for any x, y ∈ Rn, we have T (x + y) = T (x) + T (y).

2 for any x and any scalar c ∈ R, we have T (cx) = cT (x).

One way to visualize a linear transformation is an arrow carrying
things in the domain to things in the codomain, hitting exactly the
things in the range:
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Linear transformations: example

Example

For any m × n matrix A we have a function from Rn to Rm given
by x 7→ Ax.

We have already seen that A(x + y) = Ax + Ay and
A(cx) = c(Ax). Thus the map T : Rn → Rm given by T (x) = Ax
is linear.

Example

The map x→ 2x is a linear map from Rn to Rn for any space n.
(Just a consequence of the algebraic properties of vector addition
and scalar multiplication.) In fact, this is the same function you
get when you multiply vectors in Rn by the matrix

A =


2 0 . . . 0
0 2 . . . 0
...

...
...

...
0 0 . . . 2

 .

Dan Crytser Lecture 7: Linear transformations



Linear transformations: example

Example

For any m × n matrix A we have a function from Rn to Rm given
by x 7→ Ax. We have already seen that A(x + y) = Ax + Ay and
A(cx) = c(Ax).

Thus the map T : Rn → Rm given by T (x) = Ax
is linear.

Example

The map x→ 2x is a linear map from Rn to Rn for any space n.
(Just a consequence of the algebraic properties of vector addition
and scalar multiplication.) In fact, this is the same function you
get when you multiply vectors in Rn by the matrix

A =


2 0 . . . 0
0 2 . . . 0
...

...
...

...
0 0 . . . 2

 .

Dan Crytser Lecture 7: Linear transformations



Linear transformations: example

Example

For any m × n matrix A we have a function from Rn to Rm given
by x 7→ Ax. We have already seen that A(x + y) = Ax + Ay and
A(cx) = c(Ax). Thus the map T : Rn → Rm given by T (x) = Ax
is linear.

Example

The map x→ 2x is a linear map from Rn to Rn for any space n.
(Just a consequence of the algebraic properties of vector addition
and scalar multiplication.) In fact, this is the same function you
get when you multiply vectors in Rn by the matrix

A =


2 0 . . . 0
0 2 . . . 0
...

...
...

...
0 0 . . . 2

 .

Dan Crytser Lecture 7: Linear transformations



Linear transformations: example

Example

For any m × n matrix A we have a function from Rn to Rm given
by x 7→ Ax. We have already seen that A(x + y) = Ax + Ay and
A(cx) = c(Ax). Thus the map T : Rn → Rm given by T (x) = Ax
is linear.

Example

The map x→ 2x is a linear map from Rn to Rn for any space n.
(Just a consequence of the algebraic properties of vector addition
and scalar multiplication.)

In fact, this is the same function you
get when you multiply vectors in Rn by the matrix

A =


2 0 . . . 0
0 2 . . . 0
...

...
...

...
0 0 . . . 2

 .

Dan Crytser Lecture 7: Linear transformations



Linear transformations: example

Example

For any m × n matrix A we have a function from Rn to Rm given
by x 7→ Ax. We have already seen that A(x + y) = Ax + Ay and
A(cx) = c(Ax). Thus the map T : Rn → Rm given by T (x) = Ax
is linear.

Example

The map x→ 2x is a linear map from Rn to Rn for any space n.
(Just a consequence of the algebraic properties of vector addition
and scalar multiplication.) In fact, this is the same function you
get when you multiply vectors in Rn by the matrix

A =


2 0 . . . 0
0 2 . . . 0
...

...
...

...
0 0 . . . 2

 .
Dan Crytser Lecture 7: Linear transformations



More examples with linear transformations

Example

Let A =

[
1 2 0
1 −3 4

]
and define a linear transformation

T : R3 → R2 by T (x) = Ax

. Thus we can write T (x) as

T

 x1
x2
x3

 =

[
1 2 0
1 −3 4

] x1
x2
x3

 =

[
x1 + 2x2

x1 − 3x2 + 4x3

]
.

Let u =

 1
1
−2

. Then T (u) =

[
1 + 2

1− 3− 8

]
=

[
3
−10

]
.
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Solving equations sucks

Solving equations with general functions is tough:

Example

Let f : R→ R be the function f (x) = xex sin(x). Can you write
down an exact solution to f (x) = 10?
Probably not, although you can find a good approximation using
graphical and numerical means.
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Solving equations with linear transformations is awesome

When solving equations with linear transformation solving becomes
simple and precise.

Example

Let A =

[
1 3 2
3 2 1

]
. Define T

 x1
x2
x3

 = A

 x1
x2
x3

. Solve

T (x) =

[
5
4

]
. This is the same as solving Ax =

[
5
4

]
. We can

do this using row reduction on the augmented matrix:[
1 3 2 5
3 2 1 4

]
∼
[

1 3 2 5
0 −7 −5 −11

]
shows it has a solution, transform to reduced echelon form:[

1 0 −1/7 2/7
0 1 5/7 11/7

]
.
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Solving eqns., ctd.

Example

We have our system in reduced echelon form:[
1 0 −1/7 2/7
0 1 5/7 11/7

]
.

Thus x = 2/7 + z/7, y = 11/7− 5z/7, and z is free. A solution is

(3/7, 6/7, 1). Thus T (3/7, 6/7, 1) =

[
5
4

]
.

You can also answer questions about whether or not there is more
than one solution to T (x) = b using the same method, by writing
things in terms of an augmented matrix and then using an echelon
form.

Remark

Solving equations involving linear equations easier than solving
other eqns.
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Solving equations with linear transformations: another
example

Define a map T (x) = Ax where

A =

 1 0 −3
−3 1 6
2 −2 −1

 .

Let b =

 −2
3
−1

. Let’s try to find a vector x such that Ax = b,

and let’s check to see if it’s unique. Write the augmented matrix

A =

 1 0 −3 −2
−3 1 6 3
2 −2 −1 1

 ∼
 1 0 −3 −2

0 1 −3 −3
0 −2 5 5

 ∼
 1 0 −3 −2

0 1 −3 −3
0 0 −1 −1

 .
Consistent? Unique solution?
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Another example, ctd.

So we have the mtrix 1 0 −3 −2
0 1 −3 −3
0 0 −1 −1



∼

 1 0 0 1
0 1 0 0
0 0 1 1



Thus the solution is

 1
0
1

. We check our work:

T

 1
0
1

 =

 1
−3
2

+

 −3
6
−1

 =

 −2
3
−1

 .

Thus

 1
0
1

 is the unique solution.
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Example: projection

Example

Let A =

 1 0 0
0 1 0
0 0 0

.

Then x 7→ Ax determines a map from

R3 → R3 given by x1
x2
x3

 7→ A

 x1
x2
x3

 = x1

 1
0
0

+x2

 0
1
0

+x3

 0
0
0

 =

 x1
x2
0

 .

Thus T

 x1
x2
x3

 =

 x1
x2
0

. T takes a vector in R3,

thought of as a point in three-dimensional space, and drops it on
to the xy -plane.
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R3 → R3 given by x1
x2
x3



7→ A

 x1
x2
x3

 = x1

 1
0
0

+x2

 0
1
0

+x3

 0
0
0

 =

 x1
x2
0

 .

Thus T

 x1
x2
x3

 =

 x1
x2
0

. T takes a vector in R3,

thought of as a point in three-dimensional space, and drops it on
to the xy -plane.
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Example: rotations

There is a special collection of linear transformations from R2 to
R2 which rotate the plane.

Example

Let A =

[
0 −1
1 0

]
. Then the linear transformation T (x) = Ax

has the effect of rotating vectors in R2 by π/2 counterclockwise.

For example T

([
1
0

])
=

[
0
1

]
. The image of

[
0
1

]
is

[
−1
0

]
.

A rotation matrix generally looks like

[
cos(t) − sin(t)
sin(t) cos(t)

]
, where

t is the angle you are rotating by counterclockwise.
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Example: dilations and contractions

There is another special colection of linear transformations, one of
which we have already seen.

Example

Let c ∈ (0,∞) be a positive scalar. The linear transformation
T (x) = cx is called a contraction if c < 1, the identity if c = 1,
and a dilation if c > 1. Here we see the dilation with c = 3.

Remark

If c is negative, we flip and then rotate.
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Properties of linear transformations

Remember:

a linear transformation is just a function between
vector spaces that preserves the addition
(T (u + v) = T (u) + T (v)) and scalar multiplication
(T (cu) = cT (u)). There are some properties that linear
transformations have in common with matrix-vector products.

Fact

Let T : Rn → Rm be a linear transformation between vector
spaces. Then

T (0) = 0

and
T (cu + dv) = cT (u) + dT (v)

for any vectors u, v and scalars c, d.
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Proof

Let’s prove that T (0) = 0 and T (cu + dv) = cT (u) + dT (v) for
linear transformation.

1 for the first, just write 0 = 00 and pass the scalar out.

2 Second, use addition then two instances of scaling:

T (cu + dv) = T (cu) + T (dv) = cT (u) + dT (v).

Remark

The property T (cu + dv) = cT (u) + dT (v) actually contains both
properties for linearity: it it holds, then addition and scalar
multiplication are both preserved. To check that addition is
preserved, set both scalars to 1. To check that scalar
multiplication is preserved, set one scalar to 0.
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Linear transformations and linear combinations

We have seen that for a linear transformation we always have
T (cu + dv) = cT (u) + dT (v) for all vectors and scalars.

This
extends to a general fact: the image of a linear combination of
some vectors is a linear combination of the images of those vectors.

Fact

If v1, . . . , vp ∈ Rn are vectors and c1, . . . , cp are scalars, and T is a
linear transformation with domain Rn, then

T (c1v1 + . . .+ cpvp) = c1T (v1) + . . .+ cpT (vp).

You can prove this just by repeating the proof of the case for
p = 2. This fact will be very useful to us: it will enable us to write
any linear transformation T : Rn → Rm in the form T (x) = Ax for
a unique matrix A.
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