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Today’s lecture

1 Suppose we have vectors a1, . . . , ap in Rn.

When does the
homogeneous system[

a1 a1 . . . ap
]
x = 0

We will define a property, called linear independence, which is
useful for studying this question.

2 We will describe geometrically what it means for a set
containing one or two vectors to be linearly independent.

3 We will give some alternate ways of studying linearly
independent and dependent sets, and some basic theorems.
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Linear independence: definition

Definition

A set {v1, . . . , vp} of vectors in Rn is called linearly independent
if the vector equation

x1v1 + x2v2 + . . . + xpvp = 0

has only the trivial solution x1 = x2 = . . . = xp = 0.

The set
{v1, . . . , vp} is called linearly dependent if there exist weights
x1, . . . , xp, not all zero, weight

x1v1 + x2v2 + . . . + xpvp = 0 (∗)

An equation such as this is called a linear dependence relation
among the vectors as long as the weights aren’t ALL zero. The
vectors v1, . . . , vp are linearly dependent (resp. independent) if
{v1, . . . , vp} is a linearly dependent set (resp. independent).
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Linear independence: examples

Example

Let v1 = (1, 3) and v2 = (−7,−21).

Checking if v1, v2 are linearly
independent or not amounts to finding a non-trivial solution to
x1(1, 3) + x2(−7, 2− 1) = (0, 0). A nontrivial solution is
x1 = 7, x2 = 1. Thus the set {v1, v2} is linearly dependent.The
equation 7v1 + v2 = 0 is a linear dependence relation among v1
and v2.
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Linear independence: example with row reduction

Example

Let v1 = (1, 2, 3), v2 = (4, 5, 6), v3 = (2, 1, 0).

Let’s determine
using the row reduction algorithm if {v1, v2, v3} is linearly
independent. That is, does the system

[
v1v2v3

]
x = 0 have a

unique solution? The matrix is 1 4 2
2 5 1
3 6 0


where we have omitted the constant column because we know it’s
all zeros. Use row reduction 1 4 2

2 5 1
3 6 0

 ∼
 1 4 2

0 −3 −3
0 −6 −6

 ∼
 1 4 2

0 −3 0
0 0 0


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Example, ctd.

Example  1 4 2
0 −3 0
0 0 0



This matrix is in echelon form. Is every column of this matrix a
pivot column? No, the third column does not contain a pivot.
Thus the system does not have unique solutions. That means
{v1, v2, v3} is linearly dependent. Thus there is a non-trivial
solution (x1, x2, x3) 6= (0, 0, 0) to x1v1 + x2v2 + x3v3 = 0. A
solution to this system could be obtained by row-reducing. The
parametric form of the solution is (x1, x2, x3) = x3(2,−1, 1), where
x3 is free. So (10,−5, 5) is a solution. That means

10v1 − 5v2 + 5v3 = 0

is a linear dependence relation for the set {v1, v2, v3}.
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Linear independence and Ax = 0, I

Remark

Let A be an m × n matrix, columns ai , i = 1, . . . , p.

Any linear
dependence relation among the columns

x1a1 + x2a2 + . . . + xpap = 0

(where not all xi are zero) is also a non-trivial solution to the
matrix equation

A


x1
x2
...
xp

 = 0.

Thus there are no non-trivial solutions to Ax = 0 if and only if
there are no linear dependence relations among the columns of A.
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Linear independence and Ax = 0, II

We summarize this with a theorem.

Theorem

The columns of A are linearly independent if and only if the only
solution to Ax = 0 is the trivial solution x = 0

Example

The columns of

A =

[
1 2 0
1 0 1

]
are not linearly independent. No matter how you row-reduce there
is no way that every column of A can contain a pivot, so there will
always be free variables in the solution to Ax = 0. Since the
solution to Ax = 0 is not unique, the columns are linearly
dependent.
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Dependence among one vector

When dealing with small sets of vectors–one or two elements–it is
easy to check linear independence without using row reduction.

If
there is only one vector in the set, a linear combination is just a
scalar multiple cv. This can only equal 0 if c = 0 (trivial solution)
or v = 0.

Fact

A set containing one vector {v} is linearly dependent if and only if
v = 0.

Example

Consider the set {
[

1
2

]
}. Is it linearly independent or linearly

dependent?
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Linear dependence among two vectors

Suppose that the set has two vectors: v and w. When is {v,w}
linearly dependent?

1 If cv + dw = 0 is a linear dependence relation, with say
c 6= 0, then v = −d

c w. (Something similar if d 6= 0.)

2 If v = cw for some scalar c , then

1v + (−c)w = 0

is linear dependence relation (the first scalar is nonzero, the
second −c might be 0)–doesn’t matter, just need at least one
nonzero.

Summarize this with a useful fact:

Fact

A set of two vectors {v,w} is linearly dependent if and only if one
of the vectors is a multiple of the other.
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Linear dependence among two vectors: example

Fact

A set of two vectors {v,w} is linearly dependent if and only if one
of the vectors is a multiple of the other.

We can use this theorem to really quickly decide when sets with
two vectors are linearly dependent or linearly independent.

Example

Is the set {
[

1
2

]
,

[
3
6

]
} linearly dependent? The two are scalar

multiples of one another, so dependent.
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Linear dependence for sets containing zero vector

The previous fact can be used to show that any set consisting of
the zero vector and another vector is linearly dependent, just write
0 = 0v

Thus {0, v} is linearly dependent no matter what v is.

Fact

For any vector v, the set {0, v} is linearly dependent.
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Linear dependence for sets containing zero vector

In fact, this works for sets containing the zero vector along with
any number of other vectors.

We dignify this fact with the lofty
title of theorem:

Fact

Any set {v1, . . . , vp} which contains the zero vector, say v1 = 0, is
linearly dependent.

Proof.

The weights x1 = 1, x2 = x3 = . . . = xp = 0 are a non-trivial
solution to

x1v1 + . . . + xpvp = 0.

So the set is linearly dependent.

Example

The set {0, (1, 0, 2), (0, 0, 1), (7, 2, 0)} is linearly dependent.
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Linearly dependent sets: at least one vector is spanned by
the others

One nice result about linearly dependence is that if a set is linearly
dependent, you can always find at least one vector in the set which
is in the span of the other vectors.

Theorem

A set S = {v1, v2, . . . , vp} of vectors is linearly dependent if and
only if at least one of the vectors in S is a linear combination of
the others. In fact, if S is linearly dependent and v1 6= 0, then
some vj (with j > 1) is a linear combination of the preceding
vectors v1, . . . , vj−1.

Remark

The stuff after “in fact” just says that you can look at the vectors
“in order” and test to see if each is a linear combination of the
vectors that preceded it, and then j can be the first index where
you can actually write the linear combination.
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Linearly dependent sets and span: example

The set (1, 2), (2, 3), (3, 4) is a linearly dependent set.

The
associated matrix is[

1 2 3
2 3 4

]
∼
[

1 2 3
0 −1 −2

]
∼
[

1 0 −1
0 1 2

]
So the solutions to Ax = 0 are given in parametric form as
(x , y , z) = z(1,−2, 1), where z is free. So[

1
2

]
− 2

[
2
3

]
+

[
3
4

]
=

[
0
0

]
which we can rearrange to[

3
4

]
= 2

[
2
3

]
+ (−1)

[
1
2

]
So we wrote, as is always possible, one of the vectors in the linearly
dependent set as a linear combination of the others.
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Linear dependence: vector size and set size

A useful theorem tells us that when the number of vectors in a set
is larger than the size of those vectors (number of entries), the set
must be linearly dependent.

Theorem

If a set of vectors contains more vectors than there are entries in
the vectors, then the set is linearly dependent. That is, if
{v1, v2, . . . , vp} is a set of vectors in Rn, it is linearly dependent if
p > n.

Remark

Note that the converse is not true: you can easily have a set with
p ≤ n vectors which is linearly dependent. For instance, {0} ⊂ R2

has p = 1 and n = 2, but any set containing the zero vector is
linearly dependent.
Also we can’t say anything in the case when n = p: could be
linearly independent (e.g. {(1, 0), (0, 1)} ⊂ R2) or linearly
dependent (e.g. {(1, 1), (2, 2)} ⊂ R2).
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A useful theorem tells us that when the number of vectors in a set
is larger than the size of those vectors (number of entries), the set
must be linearly dependent.

Theorem

If a set of vectors contains more vectors than there are entries in
the vectors, then the set is linearly dependent. That is, if
{v1, v2, . . . , vp} is a set of vectors in Rn, it is linearly dependent if
p > n.

Remark

Note that the converse is not true: you can easily have a set with
p ≤ n vectors which is linearly dependent. For instance, {0} ⊂ R2

has p = 1 and n = 2, but any set containing the zero vector is
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Linear dependence and set size: examples

Determine (without row reduction) linear dependence for the sets

1

 1
7
6

 ,

 2
0
9

 ,

 3
1
5

 ,

 4
1
8


2

 2
3
5

 0
0
0

 1
7
9



3


−2
4
6

10




3
−6
−9
15


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