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Today’s lecture

1 Finish up with homogeneous equations, learning when they
have a nontrivial solution.

2 Describe the solution set homogeneous equation as the span
of a finite set of vectors.

3 Describe the solution set of an inhomogeneous equation.

4 Use systems of linear equations to model economic behavior.

5 Use systems of linear equations to model street traffic.
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Trivial and nontrivial solutions

A homogeneous system Ax = 0 always has at least one solution:

x = 0. If we form the linear combination of the columns of A with
all weights equal to 0, we just get 0 + 0 + . . . + 0 = 0. So the
question of whether or not Ax = 0 is consistent is kinda boring–it
always is.
The interesting question becomes: can we find x 6= 0 with Ax = 0?

Definition

Let Ax = 0 be a homogeneous system of linear equations. The
trivial solution to this system is x = 0. A solution x to Ax = 0
with x 6= 0 is referred to as a non-trivial solution.
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Trivial and nontrivial solutions: examples

Example

Let A =

[
1 0 −1
0 2 0

]
.

The trivial solution to Ax = 0 is

x = (0, 0, 0), same as for any matrix with 3 columns. An example

of a nontrivial solution to Ax = 0 is x =

 1
0
1

 . We check this by

multiplying:

A

 1
0
1

 = 1

[
1
0

]
+ 0

[
0
2

]
+ 1

[
−1
0

]
=

[
0
0

]
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When do non-trivial solutions exist?

Suppose that Ax = 0.

There is a nontrivial solution exactly when
the solutions are not unique. So we can check to see if there is a
nontrivial solution to Ax = 0 by reducing the system to echelon
form, then looking at pivot columns.

Example

Let A =

[
1 2 3
2 4 5

]
. Is there a nontrivial solution to

Ax = 0?Reduce the augmented matrix to echelon form:[
1 2 3 0
2 4 5 0

]
→
[

1 2 3 0
0 0 −1 0

]
.

Is every column a pivot column? No, so the solution is not unique,
and there is a nontrivial solution to Ax = 0. In this example,
x = (−2, 1, 0) is a nontrivial solution.
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Describing planes with parameters

Let’s the solution set of the homogeneous system

2x − 4y − 8z = 0

as the span of some set of vectors.

We can skip past a lot of matrix stuff: this equation is equivalent
to

x − 2y − 4z = 0

which has basic variable x and free variables y and z .
Solve for basic in terms of free: x = 2y + 4z . A solution looks like

(x , y , z) = (2y + 4z , y , z) = y(2, 1, 0) + z(4, 0, 1).

Thus the solution set is

Span{(2, 1, 0), (4, 0, 1)}.
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Parametric vector equations

In the previous example, every solution to the system

2x − 4y − 8z = 0

has the form
(x , y , z) = c(2, 1, 0) + d(4, 0, 1)

for some choice of scalars c, d ∈ R. We call this a parametric
vector equation of the plane.

Example

The system
x − y = 0

has the solution set {(x , x)} = Span{(1, 1)} ⊂ R2. It has the
parametric equation x = x(1, 1), where x is a scalar.
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Inhomogeneous solutions

We have a pretty good idea of how to describe the solution set of
Ax = 0 in parametric form.

What about describing the solution set
of Ax = b where b 6= 0?

Example

Describe the solution set of Ax = b where A =

[
1 2
2 4

]
and

b = (3, 6). The augmented matrix is

[
1 2 3
2 4 6

]
→
[

1 2 3
0 0 0

]
.

Now write x + 2y = 3, solve for the basic variable x , to get
x = 3− 2y , y free. Solutions look like
(x , y) = (3− 2y , y) = (3, 0) + y(−2, 1), where y is any number.
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Solutions of inhomogeneous equations

Theorem

Let Ax = b be an inhomogeneous matrix equation, where A is a
m× n matrix and b 6= 0. Suppose that p is a particular solution to
the system. Consider the homogeneous system Az = 0. Then
every other solution w of Ax = b has the form

w = p + v

where v is some solution to Az = 0.

Conversely, if v is some
solution to Az = 0, then p + v is a solution to Ax = b

Proof.

Suppose that Aw = b = Ap. Then we can subtract to obtain

A(w − p) = b− b = 0.

So w − p = v for some v a solution of Az = 0
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Proof, ctd.

Proof.

Now suppose that p is a particular solution to Ax = b and Av = 0.

Then
A(p + v) = Ap + Av = b + 0 = b.

Thus p + v is a solution to Ax = b as well.

The previous theorem shows that to describe the solutions of
Ax = b takes two steps:

1 find one particular solution p, that is a vector p such that
Ap = b;

2 describe all solutions to the affiliated homogeneous system
Az = 0

The solutions set is then {p + v : Av = 0}.
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Example: parametric form for inhomogeneous soutions

Write all solutions to[
1 2 1
3 6 4

] x
y
z

 =

[
1
3

]
.

We see that the first column equals the vector

[
1
3

]
, so a

particular solution is given by x = 1, y = 0, z = 0. Now we
describe the solutions to the associated homogeneous equation[

1 2 1
3 6 4

] x
y
z

 =

[
0
0

]
.

The augmented matrix is[
1 2 1 0
3 6 4 0

]
∼
[

1 2 1 0
0 0 1 0

]
∼
[

1 2 0 0
0 0 1 0

]
.
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Example, ctd.

Solving the previous homogeneous equation yields x = −2y , z = 0,
y free.

The solution set of the associated homogeneous equation is

Span{

 −2
1
0

}. A particular solution to the inhomogeneous

equation is  1
0
0


. Thus the general parametric form of the solution to the
inhomogeneous is

1
0
0

+ t

 −2
1
0


where t is allowed to be any real number.
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Change

Now we’re going to look at some applications of linear systems:
economics and street traffic.
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Application: Economics

Most applications of linear algebra come from modeling some
quantity which changes hands of locations with a set of linear
equations.

The equations generally reflect some sort of balancing or
conservation, in which the substance or quantity is not destroyed
or lost.
The first example of this we shall see comes from economics. Many
economists divide the economy of a city, province, or nation into
sectors. Examples of these could include: coal, electricity, steeletc.
You measure the output of a sector in dollars. The sectors use their
own output and the output of the other sectors: steel needs coal,
producing coal requires electricity, electric plants need steel, etc.
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Economics

Suppose that you are studying an economy in which there are just
these three sectors (C,E,S).

Suppose that of the total output of C, 40 percent is purchased by
E and 60 percent by S. Let’s say we have similar rules, summarized
in the table:

From From From

C E S Purchased by:

.0 .4 .6 C

.6 .1 .2 E

.4 .5 .2 S

We denote the output of the three sectors by pC , pE , pS .
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Economics, ctd.

From From From

C E S Purchased by:

.0 .4 .6 C

.6 .1 .2 E

.4 .5 .2 S

In a balanced economy the amount each sector spends equals the
amount it produces. For example C produces pC dollars and
spends .4pE + .6pS . So

pC = .4pE + .6pS

if the economy is to be balanced. Similarly

pE = .6pC + .1pE + .2pS

and
pS = .4pC + .5pE + .2pS .

Rewriting these in linear form we obtain

pC − .4pE − .6pS = 0

−.6pC + .9pE − .2pS = 0

−.4pC − .5pE + .8pS = 0

as our system of linear equations.
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Economics, ctd.

pC − .4pE − .6pS = 0

−.6pC + .9pE − .2pS = 0

−.4pC − .5pE + .8pS = 0

We solve this by row reduction on the augmented matrix 1 −.4 −.6 0
−.6 .9 −.2 0
−.4 −.5 .8 0

 ∼
 1 0 −.94 0

0 1 −.85 0
0 0 0 0


The solution is therefore pC = .94pS , pE = .85pS , and pS free.
The price vector is

p =

 pC
pE
pS

 = pS

 .94
.85
1


with pS free. Also need pS ≥ 0.
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The solution is therefore pC = .94pS , pE = .85pS , and pS free.

The price vector is

p =

 pC
pE
pS

 = pS

 .94
.85
1


with pS free. Also need pS ≥ 0.
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Application: network flow

The mathematical framework of networks is useful in many
different contexts.

The following definition you don’t need to know
by heart.

Definition

A network is a collection of nodes joined by branches which
connect one node to another, along with numbers called flow
amounts (or weights) through each branch.

Example

Streets can be used as an example of networks:

1 the streets are the branches, with direction

2 the nodes are the intersections

3 the hourly traffic following along a street in a given direction
is the flow weight.
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Network flow: example

The nodes are A,B,C,D. The flow into each node has to equal the
flow out of each node.

Node (intersection) Flow in Flow out

A 300 + 500 = x1 + x2
B x2 + x4 = 300 + x3
C 100 + 400 = x4 + x5
D x1 + x5 = 600
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Traffic flow, ctd.

We have the balanced flow equations

Node (intersection) Flow in Flow out

A 300 + 500 = x1 + x2
B x2 + x4 = 300 + x3
C 100 + 400 = x4 + x5
D x1 + x5 = 600

We also need that the flow into the system
(500 + 300 + 100 + 400) equals the flow out (300 + x3 + 600). We
simplify and combine all of this into a system of equations:

x1 + x2 = 800

x2 − x3 + x4 = 300

x4 + x5 = 500

x1 + x5 = 600

x3 = 400

.
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Traffic flow, ctd.

x1 + x2 = 800

x2 − x3 + x4 = 300

x4 + x5 = 500

x1 + x5 = 600

x3 = 400

.

If we solve this system with row reduction we get the solution set
x1 = 600− x5
x2 = 200 + x5
x3 = 400
x4 = 500− x5
x5 is free

Again, real world constraints make the solution set smaller. x4
cannot be negative because there cannot be a negative number of
cars passing through a branch. So 0 ≤ x5 ≤ 500.
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What this is used for

(You don’t need to know this for HW, exams, etc. ): The previous
set-up will be familiar to anyone who has studied operations
research (OR).

In OR we want to maximize or minimize some
linear objective function of the variables, like
f (x1, x2, x3, x4) = 2x1 + x2 − x3 + 7x4. The idea is that the first
step describes all the traffic configurations as a higher-dimensional
object called the set of feasible solutions. There are methods you
can use the find the minimum or maximum value of f , most
famously the simplex algorithm invented by George Dantzig, which
uses the geometry of the set of feasible solutions to efficiently find
the optimal solution.
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