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Today’s lecture

We saw in the previous lecture that solving systems of linear
equations is equivalent to solving certain vector equations

x1a1 + x2a2 + . . . + xpap = b (∗).

Today we are going to further compress our notation, writing the
sum on the left side of the equation (∗) as a matrix-vector product
Ax. We will see that solving such matrix equations is equivalent
to solving systems of linear equations, and that we can extract
much useful information about the solution set by studying the
matrix A.
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Review of matrices

Remember that an m-by-n matrix A is a rectangular array of
numbers

A =

 a11 a12 . . . a1n
. . . . . . . . . . . .
am1 am2 . . . amn



The columns of A are

a1 =


a11
a21

...
am1

 , a2 =


a12
a22

...
am2

 , . . . , an =


a1n
a2n

...
amn
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Matrix products

Definition

Let A be an m x n matrix with columns a1, a2, . . . , an

(in “m by
n” the “n” tells you how many columns there are). Let x ∈ Rn be
a vector. The linear combination of a1, . . . , an with corresponding
entries in x as weights is

Ax = x1a1 + x2a2 + . . . + xnan.

Example

Let A =

[
1 0 2
0 3 7

]
and let x =

 −1
2
3

. Then the linear

combination Ax is

−1

[
1
0

]
+2

[
0
3

]
+3

[
2
7

]
=

[
−1
0

]
+

[
0
6

]
+

[
6

21

]
=

[
5

27

]
.
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Linear combinations as matrix products

We can write any linear combination of vectors in the form Ax.

Example

Suppose that v1, v2, v3 are vectors in Rn. How would we write the
linear combination

2v1 + 7v2 − 5v3

in the form Ax for some choice of matrix A and some choice of
weights x = (x1, x2, x3)? The vectors are the columns and the
entries in the weight vector are the weights in the linear
combination. So

A = [v1 v2 v3] and x = (2, 7,−5).

Note that the position of the vector as a column is the same as the
position of the weight in the weight vector.
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Matrix equations

Writing linear combinations of vectors in the form Ax = b gives us
another way to write systems of linear equations.

Example

The system
2x + y − 2z = −1

9x + 3y + z = 2

is has the same solutions (x , y , z) as the vector equation

x

[
2
9

]
+ y

[
1
3

]
+ z

[
−2
1

]
=

[
−1
2

]
which can also be written as the matrix equation

[
2 1 −2
9 3 1

] x
y
z

 =

[
−1
2

]
.
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Equations: systems, vector equations, matrix equations

We make this into a theorem.

Theorem

If A is an m × n matrix, with columns a1, . . . , an vectors in Rm,
and if b is in Rm, then the matrix equation

Ax = b

has the same solutions x = (x1, . . . , xn) as the vector equation

x1a1 + x2a2 + . . . + xnan = b

which has the same solutions as the system of linear equations
whose augmented matrix is

[a1 . . . an b] .
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Existence

Example

Does the equation 1 2 0
2 3 5
4 6 10

 x1
x2
x3

 =

 1
2
3


have any solution?

We just need to check if 1 2 0 1
2 3 5 2
4 6 10 3


is consistent. This is row-equivalent to 1 2 0 1

0 −1 5 0
0 0 0 −1
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Solutions vs. linear combinations

Just as when we studied systems of linear equations, we are very
interested in when a solution to a given matrix equation Ax = b
exists.

Fact

The equation Ax = b has a solution if and only if b is a linear
combination of the columns of A.

Example

Let A =

 1 −1
2 7
0 0

 and let b =

 0
0
1

. Is there any solution to

Ax = b? Such a solution would imply that b is a linear
combination of the columns of A, which have 0 third entry.
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Spanning Rn

In the equation Ax = b we generally have to take into account A
and b when determining whether or not there is a solution.

However there are some matrices A for which we don’t have to
take into account b when checking existence: every vector b is a
linear combination of the columns of A.

Theorem

Let A be an m × n matrix. Then the following statements are
logically equivalent. (They are all true or all false.)

(a) For each b in Rm, the equation Ax = b has a solution x.

(b) Each b in Rm is a linear combination of the columns of A.

(c) The columns a1, . . . , an of A span Rm in the sense that
Span{a1, . . . , an} = Rm

(d) A has a pivot position in every row.
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Properties of the matrix-vector product

We have defined the matrix vector product Ax to be a linear
combination of the columns of A with the entries of x as weights.

Many of the nice algebraic properties of linear combinations pass
to the product.

Theorem

If A be an m × n matrix, u and v are vectors in Rn, and c is a
scalar, then:

1 A(u + v) = Au + Av

2 A(cu) = c(Au)

This shows that multiplying vectors by matrices is an example of a
linear transformation: a function from Rn to Rn which “preserves”
the vector addition and scalar multiplication. (More about these
later on.)
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Properties of the matrix-vector product, ctd.

Proof.

We are going to prove that if A =
[
a1 a2 . . . an

]
is a m × n

matrix, u = (u1, u2, . . . , un) is in Rn and c is a scalar, then

A(cu) = c(Au).

On the left hand side (LHS), we have A(cu) = A(cu1, cu2, . . . , cun)
by definition of the scalar multiple cuBut then for the LHS we get
A(cu) = cu1a1 + cu2a2 + . . . + cunan. We can write this as

cu1a1 + cu2a2 + . . . + cunan = c(u1a1 + u2a2 + . . . + unan).

But within the parentheses we have Au, so that

A(cu) = c(Au).
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Homogeneous systems

Definition

A system of linear equations is homogeneous if the constants are
all 0. Otherwise inhomogeneous.

Example

Consider the system

2x + y + z = 0

3x − y + 7z = 0
.

Is this system homogeneous? What about

x + y + z = 7

x − y + 2z = 1

3x + 5y − z = 8

.

Remark

An equivalent description: a system is homogenous if it can be
written as Ax = 0, where 0 is the zero vector.
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Trivial and nontrivial solutions

A homogeneous system Ax = 0 always has at least one solution:

x = 0. If we form the linear combination of the columns of A with
all weights equal to 0, we just get 0 + 0 + . . . + 0 = 0. So the
question of whether or not Ax = 0 is consistent is kinda boring–it
always is.
The interesting question becomes: can we find x 6= 0 with Ax = 0?

Definition

Let Ax = 0 be a homogeneous system of linear equations. The
trivial solution to this system is x = 0. A solution x to Ax = 0
with x 6= 0 is referred to as a non-trivial solution.

Dan Crytser Lecture 4: Ax = b and solution sets



Trivial and nontrivial solutions

A homogeneous system Ax = 0 always has at least one solution:
x = 0.

If we form the linear combination of the columns of A with
all weights equal to 0, we just get 0 + 0 + . . . + 0 = 0. So the
question of whether or not Ax = 0 is consistent is kinda boring–it
always is.
The interesting question becomes: can we find x 6= 0 with Ax = 0?

Definition

Let Ax = 0 be a homogeneous system of linear equations. The
trivial solution to this system is x = 0. A solution x to Ax = 0
with x 6= 0 is referred to as a non-trivial solution.

Dan Crytser Lecture 4: Ax = b and solution sets



Trivial and nontrivial solutions

A homogeneous system Ax = 0 always has at least one solution:
x = 0. If we form the linear combination of the columns of A with
all weights equal to 0, we just get 0 + 0 + . . . + 0 = 0.

So the
question of whether or not Ax = 0 is consistent is kinda boring–it
always is.
The interesting question becomes: can we find x 6= 0 with Ax = 0?

Definition

Let Ax = 0 be a homogeneous system of linear equations. The
trivial solution to this system is x = 0. A solution x to Ax = 0
with x 6= 0 is referred to as a non-trivial solution.

Dan Crytser Lecture 4: Ax = b and solution sets



Trivial and nontrivial solutions

A homogeneous system Ax = 0 always has at least one solution:
x = 0. If we form the linear combination of the columns of A with
all weights equal to 0, we just get 0 + 0 + . . . + 0 = 0. So the
question of whether or not Ax = 0 is consistent is kinda boring–it
always is.

The interesting question becomes: can we find x 6= 0 with Ax = 0?

Definition

Let Ax = 0 be a homogeneous system of linear equations. The
trivial solution to this system is x = 0. A solution x to Ax = 0
with x 6= 0 is referred to as a non-trivial solution.

Dan Crytser Lecture 4: Ax = b and solution sets



Trivial and nontrivial solutions

A homogeneous system Ax = 0 always has at least one solution:
x = 0. If we form the linear combination of the columns of A with
all weights equal to 0, we just get 0 + 0 + . . . + 0 = 0. So the
question of whether or not Ax = 0 is consistent is kinda boring–it
always is.
The interesting question becomes: can we find x 6= 0 with Ax = 0?

Definition

Let Ax = 0 be a homogeneous system of linear equations. The
trivial solution to this system is x = 0. A solution x to Ax = 0
with x 6= 0 is referred to as a non-trivial solution.

Dan Crytser Lecture 4: Ax = b and solution sets



Trivial and nontrivial solutions

A homogeneous system Ax = 0 always has at least one solution:
x = 0. If we form the linear combination of the columns of A with
all weights equal to 0, we just get 0 + 0 + . . . + 0 = 0. So the
question of whether or not Ax = 0 is consistent is kinda boring–it
always is.
The interesting question becomes: can we find x 6= 0 with Ax = 0?

Definition

Let Ax = 0 be a homogeneous system of linear equations.

The
trivial solution to this system is x = 0. A solution x to Ax = 0
with x 6= 0 is referred to as a non-trivial solution.

Dan Crytser Lecture 4: Ax = b and solution sets



Trivial and nontrivial solutions

A homogeneous system Ax = 0 always has at least one solution:
x = 0. If we form the linear combination of the columns of A with
all weights equal to 0, we just get 0 + 0 + . . . + 0 = 0. So the
question of whether or not Ax = 0 is consistent is kinda boring–it
always is.
The interesting question becomes: can we find x 6= 0 with Ax = 0?

Definition

Let Ax = 0 be a homogeneous system of linear equations. The
trivial solution to this system is x = 0.

A solution x to Ax = 0
with x 6= 0 is referred to as a non-trivial solution.

Dan Crytser Lecture 4: Ax = b and solution sets



Trivial and nontrivial solutions

A homogeneous system Ax = 0 always has at least one solution:
x = 0. If we form the linear combination of the columns of A with
all weights equal to 0, we just get 0 + 0 + . . . + 0 = 0. So the
question of whether or not Ax = 0 is consistent is kinda boring–it
always is.
The interesting question becomes: can we find x 6= 0 with Ax = 0?

Definition

Let Ax = 0 be a homogeneous system of linear equations. The
trivial solution to this system is x = 0. A solution x to Ax = 0
with x 6= 0 is referred to as a non-trivial solution.

Dan Crytser Lecture 4: Ax = b and solution sets



Trivial and nontrivial solutions: examples

Example

Let A =

[
1 0 −1
0 2 0

]
.

The trivial solution to Ax = 0 is

x = (0, 0, 0), same as for any matrix with 3 columns. An example

of a nontrivial solution to Ax = 0 is x =

 1
0
1

 . We check this by

multiplying:

A

 1
0
1

 = 1

[
1
0

]
+ 0

[
0
2

]
+ 1

[
−1
0

]
=

[
0s
0

]
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When do non-trivial solutions exist?

Suppose that Ax = 0.

There is a nontrivial solution exactly when
the solutions are not unique. So we can check to see if there is a
nontrivial solution to Ax = 0 by reducing the system to echelon
form, then looking at pivot columns.

Example

Let A =

[
1 2 3
2 4 5

]
. Is there a nontrivial solution to

Ax = 0?Reduce the augmented matrix to echelon form:[
1 2 3 0
2 4 5 0

]
→
[

1 2 3 0
0 0 −1 0

]
.

Is every column a pivot column? No, so the solution is not unique,
and there is a nontrivial solution to Ax = 0. In this example,
x = (−2, 1, 0) is a nontrivial solution.
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Describing planes

Write the solution set of the homogeneous system

2x − 4y − 8z = 0

as the span of some set of vectors.

We can skip past a lot of matrix stuff: this equation is equivalent
to

x − 2y − 4z = 0

which has basic variable x and free variables y and z .
Solve for basic in terms of free: x = 2y + 4z . A solution looks like

(x , y , z) = (2y + 4z , y , z) = y(2, 1, 0) + z(4, 0, 1).

Thus the solution set is

Span{(2, 1, 0), (4, 0, 1)}.
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which has basic variable x and free variables y and z .
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Parametric vector equations

In the previous example, every solution to the system

2x − 4y − 8z = 0

has the form
(x , y , z) = c(2, 1, 0) + d(4, 0, 1)

for some choice of scalars c, d ∈ R.

We call this a parametric
vector equation of the plane.

Example

The system
x − y = 0

has the solution set {(x , x)} = Span{(1, 1)} ⊂ R2. It has the
parametric equation x = x(1, 1), where x is a scalar.
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Inhomogeneous solutions

We have a pretty good idea of how to describe the solution set of
Ax = 0 in parametric form.

What about describing the solution set
of Ax = b where b 6= 0?

Example

Describe the solution set of Ax = b where A =

[
1 2
2 4

]
and

b = (3, 6). The augmented matrix is

[
1 2 3
2 4 6

]
→
[

1 2 3
0 0 0

]
.

Now write x + 2y = 3, solve for the basic variable x , to get
x = 3− 2y , y free. Solutions look like
(x , y) = (3− 2y , y) = (3, 0) + y(−2, 1), where y is any number.

Dan Crytser Lecture 4: Ax = b and solution sets



Inhomogeneous solutions

We have a pretty good idea of how to describe the solution set of
Ax = 0 in parametric form. What about describing the solution set
of Ax = b where b 6= 0?

Example

Describe the solution set of Ax = b where A =

[
1 2
2 4

]
and

b = (3, 6). The augmented matrix is

[
1 2 3
2 4 6

]
→
[

1 2 3
0 0 0

]
.

Now write x + 2y = 3, solve for the basic variable x , to get
x = 3− 2y , y free. Solutions look like
(x , y) = (3− 2y , y) = (3, 0) + y(−2, 1), where y is any number.

Dan Crytser Lecture 4: Ax = b and solution sets



Inhomogeneous solutions

We have a pretty good idea of how to describe the solution set of
Ax = 0 in parametric form. What about describing the solution set
of Ax = b where b 6= 0?

Example

Describe the solution set of Ax = b where A =

[
1 2
2 4

]
and

b = (3, 6).

The augmented matrix is

[
1 2 3
2 4 6

]
→
[

1 2 3
0 0 0

]
.

Now write x + 2y = 3, solve for the basic variable x , to get
x = 3− 2y , y free. Solutions look like
(x , y) = (3− 2y , y) = (3, 0) + y(−2, 1), where y is any number.

Dan Crytser Lecture 4: Ax = b and solution sets



Inhomogeneous solutions

We have a pretty good idea of how to describe the solution set of
Ax = 0 in parametric form. What about describing the solution set
of Ax = b where b 6= 0?

Example

Describe the solution set of Ax = b where A =

[
1 2
2 4

]
and

b = (3, 6). The augmented matrix is

[
1 2 3
2 4 6

]
→
[

1 2 3
0 0 0

]
.

Now write x + 2y = 3, solve for the basic variable x , to get
x = 3− 2y , y free. Solutions look like
(x , y) = (3− 2y , y) = (3, 0) + y(−2, 1), where y is any number.

Dan Crytser Lecture 4: Ax = b and solution sets



Inhomogeneous solutions

We have a pretty good idea of how to describe the solution set of
Ax = 0 in parametric form. What about describing the solution set
of Ax = b where b 6= 0?

Example

Describe the solution set of Ax = b where A =

[
1 2
2 4

]
and

b = (3, 6). The augmented matrix is

[
1 2 3
2 4 6

]
→
[

1 2 3
0 0 0

]
.

Now write x + 2y = 3, solve for the basic variable x , to get
x = 3− 2y , y free.

Solutions look like
(x , y) = (3− 2y , y) = (3, 0) + y(−2, 1), where y is any number.

Dan Crytser Lecture 4: Ax = b and solution sets



Inhomogeneous solutions

We have a pretty good idea of how to describe the solution set of
Ax = 0 in parametric form. What about describing the solution set
of Ax = b where b 6= 0?

Example

Describe the solution set of Ax = b where A =

[
1 2
2 4

]
and

b = (3, 6). The augmented matrix is

[
1 2 3
2 4 6

]
→
[

1 2 3
0 0 0

]
.

Now write x + 2y = 3, solve for the basic variable x , to get
x = 3− 2y , y free. Solutions look like
(x , y) = (3− 2y , y) = (3, 0) + y(−2, 1), where y is any number.

Dan Crytser Lecture 4: Ax = b and solution sets



Solutions of inhomogeneous equations

Theorem

Let Ax = b be an inhomogeneous matrix equation, where A is a
m× n matrix and b 6= 0. Suppose that p is a particular solution to
the system. Consider the homogeneous system Az = 0. Then
every other solution w of Ax = b has the form

w = p + v

where v is some solution to Az = 0.

Conversely, if v is some
solution to Az = 0, then p + v is a solution to Ax = b

Proof.

Suppose that Aw = b = Ap. Then we can subtract to obtain

A(w − p) = b− b = 0.

So w − p = v for some v a solution of Az = 0
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Proof, ctd.

Proof.

Now suppose that p is a particular solution to Ax = b and Av = 0.

Then
A(p + v) = Ap + Av = b + 0 = b.

Thus p + v is a solution to Ax = b as well.

The previous theorem shows that to describe the solutions of
Ax = b takes two steps:

1 find one particular solution p, that is a vector p such that
Ap = b;

2 describe all solutions to the affiliated homogeneous system
Az = 0

The solutions set is then {p + v : Av = 0}.

Dan Crytser Lecture 4: Ax = b and solution sets



Proof, ctd.

Proof.

Now suppose that p is a particular solution to Ax = b and Av = 0.
Then

A(p + v) = Ap + Av = b + 0 = b.

Thus p + v is a solution to Ax = b as well.

The previous theorem shows that to describe the solutions of
Ax = b takes two steps:

1 find one particular solution p, that is a vector p such that
Ap = b;

2 describe all solutions to the affiliated homogeneous system
Az = 0

The solutions set is then {p + v : Av = 0}.

Dan Crytser Lecture 4: Ax = b and solution sets



Proof, ctd.

Proof.

Now suppose that p is a particular solution to Ax = b and Av = 0.
Then

A(p + v) = Ap + Av = b + 0 = b.

Thus p + v is a solution to Ax = b as well.

The previous theorem shows that to describe the solutions of
Ax = b takes two steps:

1 find one particular solution p, that is a vector p such that
Ap = b;

2 describe all solutions to the affiliated homogeneous system
Az = 0

The solutions set is then {p + v : Av = 0}.

Dan Crytser Lecture 4: Ax = b and solution sets



Proof, ctd.

Proof.

Now suppose that p is a particular solution to Ax = b and Av = 0.
Then

A(p + v) = Ap + Av = b + 0 = b.

Thus p + v is a solution to Ax = b as well.

The previous theorem shows that to describe the solutions of
Ax = b takes two steps:

1 find one particular solution p, that is a vector p such that
Ap = b;

2 describe all solutions to the affiliated homogeneous system
Az = 0

The solutions set is then {p + v : Av = 0}.

Dan Crytser Lecture 4: Ax = b and solution sets



Proof, ctd.

Proof.

Now suppose that p is a particular solution to Ax = b and Av = 0.
Then

A(p + v) = Ap + Av = b + 0 = b.

Thus p + v is a solution to Ax = b as well.

The previous theorem shows that to describe the solutions of
Ax = b takes two steps:

1 find one particular solution p, that is a vector p such that
Ap = b;

2 describe all solutions to the affiliated homogeneous system
Az = 0

The solutions set is then {p + v : Av = 0}.

Dan Crytser Lecture 4: Ax = b and solution sets



Proof, ctd.

Proof.

Now suppose that p is a particular solution to Ax = b and Av = 0.
Then

A(p + v) = Ap + Av = b + 0 = b.

Thus p + v is a solution to Ax = b as well.

The previous theorem shows that to describe the solutions of
Ax = b takes two steps:

1 find one particular solution p, that is a vector p such that
Ap = b;

2 describe all solutions to the affiliated homogeneous system
Az = 0

The solutions set is then {p + v : Av = 0}.

Dan Crytser Lecture 4: Ax = b and solution sets



Proof, ctd.

Proof.

Now suppose that p is a particular solution to Ax = b and Av = 0.
Then

A(p + v) = Ap + Av = b + 0 = b.

Thus p + v is a solution to Ax = b as well.

The previous theorem shows that to describe the solutions of
Ax = b takes two steps:

1 find one particular solution p, that is a vector p such that
Ap = b;

2 describe all solutions to the affiliated homogeneous system
Az = 0

The solutions set is then {p + v : Av = 0}.

Dan Crytser Lecture 4: Ax = b and solution sets



Row-column products (dot products)

We are going to simplify computations of matrix-vector products
Ax.

Example

Let A be a 1× n matrix and let x be in Rn. Then the columns of
A are all in R1 = R, so Ax, a linear combination of these vectors,
belongs to Rn also.

[
a1 a2 . . . an

] 
x1
x2
. . .
xn

 = a1x1 + a2x2 + . . . + anxn.

We can repeat this operation with each row of a matrix.

Dan Crytser Lecture 4: Ax = b and solution sets



Row-column products (dot products)

We are going to simplify computations of matrix-vector products
Ax.

Example

Let A be a 1× n matrix and let x be in Rn.

Then the columns of
A are all in R1 = R, so Ax, a linear combination of these vectors,
belongs to Rn also.

[
a1 a2 . . . an

] 
x1
x2
. . .
xn

 = a1x1 + a2x2 + . . . + anxn.

We can repeat this operation with each row of a matrix.

Dan Crytser Lecture 4: Ax = b and solution sets



Row-column products (dot products)

We are going to simplify computations of matrix-vector products
Ax.

Example

Let A be a 1× n matrix and let x be in Rn. Then the columns of
A are all in R1 = R, so Ax, a linear combination of these vectors,
belongs to Rn also.

[
a1 a2 . . . an

] 
x1
x2
. . .
xn

 = a1x1 + a2x2 + . . . + anxn.

We can repeat this operation with each row of a matrix.

Dan Crytser Lecture 4: Ax = b and solution sets



Row-column products (dot products)

We are going to simplify computations of matrix-vector products
Ax.

Example

Let A be a 1× n matrix and let x be in Rn. Then the columns of
A are all in R1 = R, so Ax, a linear combination of these vectors,
belongs to Rn also.

[
a1 a2 . . . an

] 
x1
x2
. . .
xn

 = a1x1 + a2x2 + . . . + anxn.

We can repeat this operation with each row of a matrix.

Dan Crytser Lecture 4: Ax = b and solution sets



Row-column products (dot products)

We are going to simplify computations of matrix-vector products
Ax.

Example

Let A be a 1× n matrix and let x be in Rn. Then the columns of
A are all in R1 = R, so Ax, a linear combination of these vectors,
belongs to Rn also.

[
a1 a2 . . . an

] 
x1
x2
. . .
xn

 = a1x1 + a2x2 + . . . + anxn.

We can repeat this operation with each row of a matrix.

Dan Crytser Lecture 4: Ax = b and solution sets


