Lecture 4: $\mathbf{A x}=\mathbf{b}$ and solution sets

Danny W. Crytser

March 28, 2014

We saw in the previous lecture that solving systems of linear equations is equivalent to solving certain vector equations

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{p} \mathbf{a}_{p}=\mathbf{b} \quad(*)
$$

Today's lecture

We saw in the previous lecture that solving systems of linear equations is equivalent to solving certain vector equations

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{p} \mathbf{a}_{p}=\mathbf{b} \quad(*)
$$

Today we are going to further compress our notation, writing the sum on the left side of the equation $(*)$ as a matrix-vector product $A \mathbf{x}$.

Today's lecture

We saw in the previous lecture that solving systems of linear equations is equivalent to solving certain vector equations

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{p} \mathbf{a}_{p}=\mathbf{b} \quad(*)
$$

Today we are going to further compress our notation, writing the sum on the left side of the equation $(*)$ as a matrix-vector product $A \mathbf{x}$. We will see that solving such matrix equations is equivalent to solving systems of linear equations, and that we can extract much useful information about the solution set by studying the matrix A.

Review of matrices

Remember that an m-by- n matrix A is a rectangular array of numbers

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

Review of matrices

Remember that an m-by- n matrix A is a rectangular array of numbers

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

The columns of A are

$$
\mathbf{a}_{1}=\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right], \ldots, \mathbf{a}_{n}=\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right]
$$

Matrix products

Definition

Let A be an $m \times n$ matrix with columns $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$

Matrix products

Definition

Let A be an $m \times n$ matrix with columns $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ (in " m by n " the " n " tells you how many columns there are).

Matrix products

Definition

Let A be an $m \times n$ matrix with columns $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ (in " m by n " the " n " tells you how many columns there are). Let $\mathbf{x} \in \mathbb{R}^{n}$ be a vector.

Matrix products

Definition

Let A be an $m \times n$ matrix with columns $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ (in " m by n " the " n " tells you how many columns there are). Let $\mathbf{x} \in \mathbb{R}^{n}$ be a vector. The linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ with corresponding entries in \mathbf{x} as weights is

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}
$$

Example

Let $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 3 & 7\end{array}\right]$ and let $\mathbf{x}=\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$.

Matrix products

Definition

Let A be an $m \times n$ matrix with columns $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ (in " m by n " the " n " tells you how many columns there are). Let $\mathbf{x} \in \mathbb{R}^{n}$ be a vector. The linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ with corresponding entries in \mathbf{x} as weights is

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}
$$

Example

Let $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 3 & 7\end{array}\right]$ and let $\mathbf{x}=\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$. Then the linear combination $A \mathbf{x}$ is
$-1\left[\begin{array}{l}1 \\ 0\end{array}\right]+2\left[\begin{array}{l}0 \\ 3\end{array}\right]+3\left[\begin{array}{l}2 \\ 7\end{array}\right]=$

Matrix products

Definition

Let A be an $m \times n$ matrix with columns $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ (in " m by n " the " n " tells you how many columns there are). Let $\mathbf{x} \in \mathbb{R}^{n}$ be a vector. The linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ with corresponding entries in \mathbf{x} as weights is

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}
$$

Example

Let $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 3 & 7\end{array}\right]$ and let $\mathbf{x}=\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$. Then the linear combination $A \mathbf{x}$ is

$$
-1\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
3
\end{array}\right]+3\left[\begin{array}{l}
2 \\
7
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
6
\end{array}\right]+\left[\begin{array}{c}
6 \\
21
\end{array}\right]=
$$

Matrix products

Definition

Let A be an $m \times n$ matrix with columns $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ (in " m by n " the " n " tells you how many columns there are). Let $\mathbf{x} \in \mathbb{R}^{n}$ be a vector. The linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ with corresponding entries in \mathbf{x} as weights is

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}
$$

Example

Let $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 3 & 7\end{array}\right]$ and let $\mathbf{x}=\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$. Then the linear combination $A \mathbf{x}$ is

$$
-1\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
3
\end{array}\right]+3\left[\begin{array}{l}
2 \\
7
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
6
\end{array}\right]+\left[\begin{array}{c}
6 \\
21
\end{array}\right]=\left[\begin{array}{c}
5 \\
27
\end{array}\right]
$$

Linear combinations as matrix products

We can write any linear combination of vectors in the form $A \mathbf{x}$.

Linear combinations as matrix products

We can write any linear combination of vectors in the form $A \mathbf{x}$.

Example

Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are vectors in \mathbb{R}^{n}.

Linear combinations as matrix products

We can write any linear combination of vectors in the form $A \mathbf{x}$.

Example

Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are vectors in \mathbb{R}^{n}. How would we write the linear combination

$$
2 \mathbf{v}_{1}+7 \mathbf{v}_{2}-5 \mathbf{v}_{3}
$$

in the form $A \mathbf{x}$ for some choice of matrix A and some choice of weights $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$?

Linear combinations as matrix products

We can write any linear combination of vectors in the form $A \mathbf{x}$.

Example

Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are vectors in \mathbb{R}^{n}. How would we write the linear combination

$$
2 \mathbf{v}_{1}+7 \mathbf{v}_{2}-5 \mathbf{v}_{3}
$$

in the form $A \mathbf{x}$ for some choice of matrix A and some choice of weights $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$? The vectors are the columns and the entries in the weight vector are the weights in the linear combination.

Linear combinations as matrix products

We can write any linear combination of vectors in the form $A \mathbf{x}$.

Example

Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are vectors in \mathbb{R}^{n}. How would we write the linear combination

$$
2 \mathbf{v}_{1}+7 \mathbf{v}_{2}-5 \mathbf{v}_{3}
$$

in the form $A \mathbf{x}$ for some choice of matrix A and some choice of weights $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$? The vectors are the columns and the entries in the weight vector are the weights in the linear combination. So

$$
A=\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right] \text { and } \mathbf{x}=(2,7,-5)
$$

Linear combinations as matrix products

We can write any linear combination of vectors in the form $A \mathbf{x}$.

Example

Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are vectors in \mathbb{R}^{n}. How would we write the linear combination

$$
2 \mathbf{v}_{1}+7 \mathbf{v}_{2}-5 \mathbf{v}_{3}
$$

in the form $A \mathbf{x}$ for some choice of matrix A and some choice of weights $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$? The vectors are the columns and the entries in the weight vector are the weights in the linear combination. So

$$
A=\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right] \text { and } \mathbf{x}=(2,7,-5) .
$$

Note that the position of the vector as a column is the same as the position of the weight in the weight vector.

Matrix equations

Writing linear combinations of vectors in the form $A \mathbf{x}=\mathbf{b}$ gives us another way to write systems of linear equations.

Example

The system

$$
\begin{aligned}
& 2 x+y-2 z=-1 \\
& 9 x+3 y+z=2
\end{aligned}
$$

Matrix equations

Writing linear combinations of vectors in the form $A \mathbf{x}=\mathbf{b}$ gives us another way to write systems of linear equations.

Example

The system

$$
\begin{aligned}
& 2 x+y-2 z=-1 \\
& 9 x+3 y+z=2
\end{aligned}
$$

is has the same solutions (x, y, z) as the vector equation

$$
x\left[\begin{array}{l}
2 \\
9
\end{array}\right]+y\left[\begin{array}{l}
1 \\
3
\end{array}\right]+z\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

Matrix equations

Writing linear combinations of vectors in the form $A \mathbf{x}=\mathbf{b}$ gives us another way to write systems of linear equations.

Example

The system

$$
\begin{aligned}
& 2 x+y-2 z=-1 \\
& 9 x+3 y+z=2
\end{aligned}
$$

is has the same solutions (x, y, z) as the vector equation

$$
x\left[\begin{array}{l}
2 \\
9
\end{array}\right]+y\left[\begin{array}{l}
1 \\
3
\end{array}\right]+z\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

which can also be written as the matrix equation

$$
\left[\begin{array}{ccc}
2 & 1 & -2 \\
9 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

Equations: systems, vector equations, matrix equations

We make this into a theorem.

Equations: systems, vector equations, matrix equations

We make this into a theorem.

Theorem

If A is an $m \times n$ matrix, with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ vectors in \mathbb{R}^{m}, and if \mathbf{b} is in \mathbb{R}^{m}, then the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

Equations: systems, vector equations, matrix equations

We make this into a theorem.

Theorem

If A is an $m \times n$ matrix, with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ vectors in \mathbb{R}^{m}, and if \mathbf{b} is in \mathbb{R}^{m}, then the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

has the same solutions $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ as the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

Equations: systems, vector equations, matrix equations

We make this into a theorem.

Theorem

If A is an $m \times n$ matrix, with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ vectors in \mathbb{R}^{m}, and if \mathbf{b} is in \mathbb{R}^{m}, then the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

has the same solutions $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ as the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

which has the same solutions as the system of linear equations whose augmented matrix is

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right] .
$$

Existence

Example

Does the equation

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & 3 & 5 \\
4 & 6 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

have any solution?

Existence

Example

Does the equation

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & 3 & 5 \\
4 & 6 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

have any solution? We just need to check if

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & 1 \\
2 & 3 & 5 & 2 \\
4 & 6 & 10 & 3
\end{array}\right]
$$

is consistent.

Example

Does the equation

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & 3 & 5 \\
4 & 6 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

have any solution? We just need to check if

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & 1 \\
2 & 3 & 5 & 2 \\
4 & 6 & 10 & 3
\end{array}\right]
$$

is consistent. This is row-equivalent to

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & 1 \\
0 & -1 & 5 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

Solutions vs. linear combinations

Just as when we studied systems of linear equations, we are very interested in when a solution to a given matrix equation $A \mathbf{x}=\mathbf{b}$ exists.

Just as when we studied systems of linear equations, we are very interested in when a solution to a given matrix equation $A \mathbf{x}=\mathbf{b}$ exists.

Fact

The equation $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

Just as when we studied systems of linear equations, we are very interested in when a solution to a given matrix equation $A \mathbf{x}=\mathbf{b}$ exists.

Fact

The equation $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

Example

$$
\text { Let } A=\left[\begin{array}{cc}
1 & -1 \\
2 & 7 \\
0 & 0
\end{array}\right] \text { and let } \mathbf{b}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Just as when we studied systems of linear equations, we are very interested in when a solution to a given matrix equation $A \mathbf{x}=\mathbf{b}$ exists.

Fact

The equation $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

Example

Let $A=\left[\begin{array}{cc}1 & -1 \\ 2 & 7 \\ 0 & 0\end{array}\right]$ and let $\mathbf{b}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Is there any solution to
$A \mathbf{x}=\mathbf{b}$?

Just as when we studied systems of linear equations, we are very interested in when a solution to a given matrix equation $A \mathbf{x}=\mathbf{b}$ exists.

Fact

The equation $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

Example

Let $A=\left[\begin{array}{cc}1 & -1 \\ 2 & 7 \\ 0 & 0\end{array}\right]$ and let $\mathbf{b}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Is there any solution to
$A \mathbf{x}=\mathbf{b}$? Such a solution would imply that \mathbf{b} is a linear combination of the columns of A, which have 0 third entry.

Spanning \mathbb{R}^{n}

In the equation $A \mathbf{x}=\mathbf{b}$ we generally have to take into account A and \mathbf{b} when determining whether or not there is a solution.

Spanning \mathbb{R}^{n}

In the equation $A \mathbf{x}=\mathbf{b}$ we generally have to take into account A and \mathbf{b} when determining whether or not there is a solution. However there are some matrices A for which we don't have to take into account \mathbf{b} when checking existence: every vector \mathbf{b} is a linear combination of the columns of A.

Spanning \mathbb{R}^{n}

In the equation $A \mathbf{x}=\mathbf{b}$ we generally have to take into account A and \mathbf{b} when determining whether or not there is a solution. However there are some matrices A for which we don't have to take into account \mathbf{b} when checking existence: every vector \mathbf{b} is a linear combination of the columns of A.

Theorem

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. (They are all true or all false.)

Spanning \mathbb{R}^{n}

In the equation $A \mathbf{x}=\mathbf{b}$ we generally have to take into account A and \mathbf{b} when determining whether or not there is a solution. However there are some matrices A for which we don't have to take into account \mathbf{b} when checking existence: every vector \mathbf{b} is a linear combination of the columns of A.

Theorem

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. (They are all true or all false.)
(a) For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{x}.

Spanning \mathbb{R}^{n}

In the equation $A \mathbf{x}=\mathbf{b}$ we generally have to take into account A and \mathbf{b} when determining whether or not there is a solution. However there are some matrices A for which we don't have to take into account \mathbf{b} when checking existence: every vector \mathbf{b} is a linear combination of the columns of A.

Theorem

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. (They are all true or all false.)
(a) For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{x}.
(b) Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.

Spanning \mathbb{R}^{n}

In the equation $A \mathbf{x}=\mathbf{b}$ we generally have to take into account A and \mathbf{b} when determining whether or not there is a solution. However there are some matrices A for which we don't have to take into account \mathbf{b} when checking existence: every vector \mathbf{b} is a linear combination of the columns of A.

Theorem

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. (They are all true or all false.)
(a) For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{x}.
(b) Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
(c) The columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ of A span \mathbb{R}^{m} in the sense that $\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}=\mathbb{R}^{m}$

Spanning \mathbb{R}^{n}

In the equation $A \mathbf{x}=\mathbf{b}$ we generally have to take into account A and \mathbf{b} when determining whether or not there is a solution. However there are some matrices A for which we don't have to take into account \mathbf{b} when checking existence: every vector \mathbf{b} is a linear combination of the columns of A.

Theorem

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. (They are all true or all false.)
(a) For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{x}.
(b) Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
(c) The columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ of A span \mathbb{R}^{m} in the sense that $\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}=\mathbb{R}^{m}$
(d) A has a pivot position in every row.

Spanning \mathbb{R}^{n}

In the equation $A \mathbf{x}=\mathbf{b}$ we generally have to take into account A and \mathbf{b} when determining whether or not there is a solution. However there are some matrices A for which we don't have to take into account \mathbf{b} when checking existence: every vector \mathbf{b} is a linear combination of the columns of A.

Theorem

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. (They are all true or all false.)
(a) For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{x}.
(b) Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
(c) The columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ of A span \mathbb{R}^{m} in the sense that $\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}=\mathbb{R}^{m}$
(d) A has a pivot position in every row.

Properties of the matrix-vector product

We have defined the matrix vector product $A \mathbf{x}$ to be a linear combination of the columns of A with the entries of \mathbf{x} as weights.

We have defined the matrix vector product $A \mathbf{x}$ to be a linear combination of the columns of A with the entries of \mathbf{x} as weights. Many of the nice algebraic properties of linear combinations pass to the product.

Properties of the matrix-vector product

We have defined the matrix vector product $A \mathbf{x}$ to be a linear combination of the columns of A with the entries of \mathbf{x} as weights. Many of the nice algebraic properties of linear combinations pass to the product.

Theorem

If A be an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and c is a scalar, then:

Properties of the matrix-vector product

We have defined the matrix vector product $A \mathbf{x}$ to be a linear combination of the columns of A with the entries of \mathbf{x} as weights. Many of the nice algebraic properties of linear combinations pass to the product.

Theorem

If A be an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and c is a scalar, then:
(1) $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$

Properties of the matrix-vector product

We have defined the matrix vector product $A \mathbf{x}$ to be a linear combination of the columns of A with the entries of \mathbf{x} as weights. Many of the nice algebraic properties of linear combinations pass to the product.

Theorem

If A be an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and c is a scalar, then:
(1) $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$
(2) $A(c \mathbf{u})=c(A \mathbf{u})$

Properties of the matrix-vector product

We have defined the matrix vector product $A \mathbf{x}$ to be a linear combination of the columns of A with the entries of \mathbf{x} as weights. Many of the nice algebraic properties of linear combinations pass to the product.

Theorem

If A be an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and c is a scalar, then:
(1) $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$
(2) $A(c \mathbf{u})=c(A \mathbf{u})$

This shows that multiplying vectors by matrices is an example of a linear transformation: a function from \mathbb{R}^{n} to \mathbb{R}^{n} which "preserves" the vector addition and scalar multiplication.

Properties of the matrix-vector product

We have defined the matrix vector product $A \mathbf{x}$ to be a linear combination of the columns of A with the entries of \mathbf{x} as weights. Many of the nice algebraic properties of linear combinations pass to the product.

Theorem

If A be an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and c is a scalar, then:
(1) $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$
(2) $A(c \mathbf{u})=c(A \mathbf{u})$

This shows that multiplying vectors by matrices is an example of a linear transformation: a function from \mathbb{R}^{n} to \mathbb{R}^{n} which "preserves" the vector addition and scalar multiplication. (More about these later on.)

Properties of the matrix-vector product, ctd.

Proof.
We are going to prove that if $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right]$ is a $m \times n$ matrix, $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is in \mathbb{R}^{n} and c is a scalar, then

$$
A(c \mathbf{u})=c(A \mathbf{u}) .
$$

Properties of the matrix-vector product, ctd.

Proof.
We are going to prove that if $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right]$ is a $m \times n$ matrix, $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is in \mathbb{R}^{n} and c is a scalar, then

$$
A(c \mathbf{u})=c(A \mathbf{u}) .
$$

On the left hand side (LHS), we have $A(c \mathbf{u})=A\left(c u_{1}, c u_{2}, \ldots, c u_{n}\right)$ by definition of the scalar multiple cu

Properties of the matrix-vector product, ctd.

Proof.

We are going to prove that if $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right]$ is a $m \times n$ matrix, $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is in \mathbb{R}^{n} and c is a scalar, then

$$
A(c \mathbf{u})=c(A \mathbf{u}) .
$$

On the left hand side (LHS), we have $A(c \mathbf{u})=A\left(c u_{1}, c u_{2}, \ldots, c u_{n}\right)$ by definition of the scalar multiple cuBut then for the LHS we get $A(c \mathbf{u})=c u_{1} \mathbf{a}_{1}+c u_{2} \mathbf{a}_{2}+\ldots+c u_{n} \mathbf{a}_{n}$.

Properties of the matrix-vector product, ctd.

Proof.

We are going to prove that if $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right]$ is a $m \times n$ matrix, $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is in \mathbb{R}^{n} and c is a scalar, then

$$
A(c \mathbf{u})=c(A \mathbf{u})
$$

On the left hand side (LHS), we have $A(c \mathbf{u})=A\left(c u_{1}, c u_{2}, \ldots, c u_{n}\right)$ by definition of the scalar multiple cuBut then for the LHS we get $A(c \mathbf{u})=c u_{1} \mathbf{a}_{1}+c u_{2} \mathbf{a}_{2}+\ldots+c u_{n} \mathbf{a}_{n}$. We can write this as

$$
c u_{1} \mathbf{a}_{1}+c u_{2} \mathbf{a}_{2}+\ldots+c u_{n} \mathbf{a}_{n}=c\left(u_{1} \mathbf{a}_{1}+u_{2} \mathbf{a}_{2}+\ldots+u_{n} \mathbf{a}_{n}\right)
$$

Properties of the matrix-vector product, ctd.

Proof.

We are going to prove that if $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right]$ is a $m \times n$ matrix, $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is in \mathbb{R}^{n} and c is a scalar, then

$$
A(c \mathbf{u})=c(A \mathbf{u})
$$

On the left hand side (LHS), we have $A(c \mathbf{u})=A\left(c u_{1}, c u_{2}, \ldots, c u_{n}\right)$ by definition of the scalar multiple cuBut then for the LHS we get $A(c \mathbf{u})=c u_{1} \mathbf{a}_{1}+c u_{2} \mathbf{a}_{2}+\ldots+c u_{n} \mathbf{a}_{n}$. We can write this as

$$
c u_{1} \mathbf{a}_{1}+c u_{2} \mathbf{a}_{2}+\ldots+c u_{n} \mathbf{a}_{n}=c\left(u_{1} \mathbf{a}_{1}+u_{2} \mathbf{a}_{2}+\ldots+u_{n} \mathbf{a}_{n}\right)
$$

But within the parentheses we have $A \mathbf{u}$, so that

$$
A(c \mathbf{u})=c(A \mathbf{u})
$$

Homogeneous systems

Definition

A system of linear equations is homogeneous if the constants are all 0. Otherwise inhomogeneous.

Homogeneous systems

Definition

A system of linear equations is homogeneous if the constants are all 0 . Otherwise inhomogeneous.

Example

Consider the system

$$
\begin{aligned}
& 2 x+y+z=0 \\
& 3 x-y+7 z=0
\end{aligned}
$$

Homogeneous systems

Definition

A system of linear equations is homogeneous if the constants are all 0 . Otherwise inhomogeneous.

Example

Consider the system

$$
\begin{aligned}
& 2 x+y+z=0 \\
& 3 x-y+7 z=0
\end{aligned}
$$

Is this system homogeneous?

Homogeneous systems

Definition

A system of linear equations is homogeneous if the constants are all 0 . Otherwise inhomogeneous.

Example

Consider the system

$$
\begin{aligned}
& 2 x+y+z=0 \\
& 3 x-y+7 z=0
\end{aligned}
$$

Is this system homogeneous? What about

$$
\begin{aligned}
x+y+z & =7 \\
x-y+2 z & =1 \\
3 x+5 y-z & =8
\end{aligned}
$$

Homogeneous systems

Definition

A system of linear equations is homogeneous if the constants are all 0 . Otherwise inhomogeneous.

Example

Consider the system

$$
\begin{aligned}
& 2 x+y+z=0 \\
& 3 x-y+7 z=0
\end{aligned}
$$

Is this system homogeneous? What about

$$
\begin{aligned}
x+y+z & =7 \\
x-y+2 z & =1 \\
3 x+5 y-z & =8
\end{aligned}
$$

Trivial and nontrivial solutions

A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution:

A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution: $\mathbf{x}=\mathbf{0}$.

A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution: $\mathbf{x}=\mathbf{0}$. If we form the linear combination of the columns of A with all weights equal to 0 , we just get $\mathbf{0}+\mathbf{0}+\ldots+\mathbf{0}=\mathbf{0}$.

A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution: $\mathbf{x}=\mathbf{0}$. If we form the linear combination of the columns of A with all weights equal to 0 , we just get $\mathbf{0}+\mathbf{0}+\ldots+\mathbf{0}=\mathbf{0}$. So the question of whether or not $A \mathbf{x}=\mathbf{0}$ is consistent is kinda boring-it always is.

A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution: $\mathbf{x}=\mathbf{0}$. If we form the linear combination of the columns of A with all weights equal to 0 , we just get $\mathbf{0}+\mathbf{0}+\ldots+\mathbf{0}=\mathbf{0}$. So the question of whether or not $A \mathbf{x}=\mathbf{0}$ is consistent is kinda boring-it always is.
The interesting question becomes: can we find $\mathbf{x} \neq \mathbf{0}$ with $A \mathbf{x}=\mathbf{0}$?

Trivial and nontrivial solutions

A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution: $\mathbf{x}=\mathbf{0}$. If we form the linear combination of the columns of A with all weights equal to 0 , we just get $\mathbf{0}+\mathbf{0}+\ldots+\mathbf{0}=\mathbf{0}$. So the question of whether or not $A \mathbf{x}=\mathbf{0}$ is consistent is kinda boring-it always is.
The interesting question becomes: can we find $\mathbf{x} \neq \mathbf{0}$ with $A \mathbf{x}=\mathbf{0}$?

Definition

Let $A \mathbf{x}=\mathbf{0}$ be a homogeneous system of linear equations.

A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution: $\mathbf{x}=\mathbf{0}$. If we form the linear combination of the columns of A with all weights equal to 0 , we just get $\mathbf{0}+\mathbf{0}+\ldots+\mathbf{0}=\mathbf{0}$. So the question of whether or not $A \mathbf{x}=\mathbf{0}$ is consistent is kinda boring-it always is.
The interesting question becomes: can we find $\mathbf{x} \neq \mathbf{0}$ with $A \mathbf{x}=\mathbf{0}$?

Definition

Let $A \mathbf{x}=\mathbf{0}$ be a homogeneous system of linear equations. The trivial solution to this system is $\mathbf{x}=\mathbf{0}$.

A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution: $\mathbf{x}=\mathbf{0}$. If we form the linear combination of the columns of A with all weights equal to 0 , we just get $\mathbf{0}+\mathbf{0}+\ldots+\mathbf{0}=\mathbf{0}$. So the question of whether or not $A \mathbf{x}=\mathbf{0}$ is consistent is kinda boring-it always is.
The interesting question becomes: can we find $\mathbf{x} \neq \mathbf{0}$ with $A \mathbf{x}=\mathbf{0}$?

Definition

Let $A \mathbf{x}=\mathbf{0}$ be a homogeneous system of linear equations. The trivial solution to this system is $\mathbf{x}=\mathbf{0}$. A solution \mathbf{x} to $A \mathbf{x}=\mathbf{0}$ with $\mathbf{x} \neq \mathbf{0}$ is referred to as a non-trivial solution.

Trivial and nontrivial solutions: examples

> Example
> Let $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 2 & 0\end{array}\right]$.

Trivial and nontrivial solutions: examples

Example

Let $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 2 & 0\end{array}\right]$. The trivial solution to $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=(0,0,0)$, same as for any matrix with 3 columns.

Trivial and nontrivial solutions: examples

Example

Let $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 2 & 0\end{array}\right]$. The trivial solution to $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=(0,0,0)$, same as for any matrix with 3 columns. An example of a nontrivial solution to $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.

Example

Let $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 2 & 0\end{array}\right]$. The trivial solution to $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=(0,0,0)$, same as for any matrix with 3 columns. An example of a nontrivial solution to $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. We check this by multiplying:

Trivial and nontrivial solutions: examples

Example

Let $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 2 & 0\end{array}\right]$. The trivial solution to $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=(0,0,0)$, same as for any matrix with 3 columns. An example of a nontrivial solution to $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. We check this by multiplying:

$$
A\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=1\left[\begin{array}{l}
1 \\
0
\end{array}\right]+0\left[\begin{array}{l}
0 \\
2
\end{array}\right]+1\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 s \\
0
\end{array}\right]
$$

When do non-trivial solutions exist?

Suppose that $A \mathbf{x}=\mathbf{0}$.

When do non-trivial solutions exist?

Suppose that $A \mathbf{x}=\mathbf{0}$. There is a nontrivial solution exactly when the solutions are not unique.

When do non-trivial solutions exist?

Suppose that $A \mathbf{x}=\mathbf{0}$. There is a nontrivial solution exactly when the solutions are not unique. So we can check to see if there is a nontrivial solution to $A \mathbf{x}=\mathbf{0}$ by reducing the system to echelon form, then looking at pivot columns.

When do non-trivial solutions exist?

Suppose that $A \mathbf{x}=\mathbf{0}$. There is a nontrivial solution exactly when the solutions are not unique. So we can check to see if there is a nontrivial solution to $A \mathbf{x}=\mathbf{0}$ by reducing the system to echelon form, then looking at pivot columns.

Example
Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5\end{array}\right]$.

When do non-trivial solutions exist?

Suppose that $A \mathbf{x}=\mathbf{0}$. There is a nontrivial solution exactly when the solutions are not unique. So we can check to see if there is a nontrivial solution to $A \mathbf{x}=\mathbf{0}$ by reducing the system to echelon form, then looking at pivot columns.

Example
Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5\end{array}\right]$. Is there a nontrivial solution to
$A \mathrm{x}=\mathbf{0}$?

When do non-trivial solutions exist?

Suppose that $A \mathbf{x}=\mathbf{0}$. There is a nontrivial solution exactly when the solutions are not unique. So we can check to see if there is a nontrivial solution to $A \mathbf{x}=\mathbf{0}$ by reducing the system to echelon form, then looking at pivot columns.

Example

Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5\end{array}\right]$. Is there a nontrivial solution to
$A \mathbf{x}=\mathbf{0}$?Reduce the augmented matrix to echelon form:

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
2 & 4 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

When do non-trivial solutions exist?

Suppose that $A \mathbf{x}=\mathbf{0}$. There is a nontrivial solution exactly when the solutions are not unique. So we can check to see if there is a nontrivial solution to $A \mathbf{x}=\mathbf{0}$ by reducing the system to echelon form, then looking at pivot columns.

Example

Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5\end{array}\right]$. Is there a nontrivial solution to
$A \mathbf{x}=\mathbf{0}$?Reduce the augmented matrix to echelon form:

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
2 & 4 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Is every column a pivot column?

When do non-trivial solutions exist?

Suppose that $A \mathbf{x}=\mathbf{0}$. There is a nontrivial solution exactly when the solutions are not unique. So we can check to see if there is a nontrivial solution to $A \mathbf{x}=\mathbf{0}$ by reducing the system to echelon form, then looking at pivot columns.

Example

Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5\end{array}\right]$. Is there a nontrivial solution to
$A \mathbf{x}=\mathbf{0}$?Reduce the augmented matrix to echelon form:

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
2 & 4 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & 0 & -1 & 0
\end{array}\right] .
$$

Is every column a pivot column? No, so the solution is not unique, and there is a nontrivial solution to $A \mathbf{x}=\mathbf{0}$.

When do non-trivial solutions exist?

Suppose that $A \mathbf{x}=\mathbf{0}$. There is a nontrivial solution exactly when the solutions are not unique. So we can check to see if there is a nontrivial solution to $A \mathbf{x}=\mathbf{0}$ by reducing the system to echelon form, then looking at pivot columns.

Example

Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5\end{array}\right]$. Is there a nontrivial solution to
$A \mathbf{x}=\mathbf{0}$?Reduce the augmented matrix to echelon form:

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
2 & 4 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Is every column a pivot column? No, so the solution is not unique, and there is a nontrivial solution to $A \mathbf{x}=\mathbf{0}$. In this example, $\mathbf{x}=(-2,1,0)$ is a nontrivial solution.

Describing planes

Write the solution set of the homogeneous system

$$
2 x-4 y-8 z=0
$$

as the span of some set of vectors.

Describing planes

Write the solution set of the homogeneous system

$$
2 x-4 y-8 z=0
$$

as the span of some set of vectors.
We can skip past a lot of matrix stuff:

Describing planes

Write the solution set of the homogeneous system

$$
2 x-4 y-8 z=0
$$

as the span of some set of vectors.
We can skip past a lot of matrix stuff: this equation is equivalent to

$$
x-2 y-4 z=0
$$

which has basic variable x and free variables y and z.

Describing planes

Write the solution set of the homogeneous system

$$
2 x-4 y-8 z=0
$$

as the span of some set of vectors.
We can skip past a lot of matrix stuff: this equation is equivalent to

$$
x-2 y-4 z=0
$$

which has basic variable x and free variables y and z. Solve for basic in terms of free: $x=2 y+4 z$.

Describing planes

Write the solution set of the homogeneous system

$$
2 x-4 y-8 z=0
$$

as the span of some set of vectors.
We can skip past a lot of matrix stuff: this equation is equivalent to

$$
x-2 y-4 z=0
$$

which has basic variable x and free variables y and z. Solve for basic in terms of free: $x=2 y+4 z$. A solution looks like

$$
(x, y, z)=(2 y+4 z, y, z)=y(2,1,0)+z(4,0,1)
$$

Describing planes

Write the solution set of the homogeneous system

$$
2 x-4 y-8 z=0
$$

as the span of some set of vectors.
We can skip past a lot of matrix stuff: this equation is equivalent to

$$
x-2 y-4 z=0
$$

which has basic variable x and free variables y and z. Solve for basic in terms of free: $x=2 y+4 z$. A solution looks like

$$
(x, y, z)=(2 y+4 z, y, z)=y(2,1,0)+z(4,0,1)
$$

Thus the solution set is

$$
\operatorname{Span}\{(2,1,0),(4,0,1)\} .
$$

Parametric vector equations

In the previous example, every solution to the system

$$
2 x-4 y-8 z=0
$$

has the form

$$
(x, y, z)=c(2,1,0)+d(4,0,1)
$$

for some choice of scalars $c, d \in \mathbb{R}$.

Parametric vector equations

In the previous example, every solution to the system

$$
2 x-4 y-8 z=0
$$

has the form

$$
(x, y, z)=c(2,1,0)+d(4,0,1)
$$

for some choice of scalars $c, d \in \mathbb{R}$. We call this a parametric vector equation of the plane.

Parametric vector equations

In the previous example, every solution to the system

$$
2 x-4 y-8 z=0
$$

has the form

$$
(x, y, z)=c(2,1,0)+d(4,0,1)
$$

for some choice of scalars $c, d \in \mathbb{R}$. We call this a parametric vector equation of the plane.

Example

The system

$$
x-y=0
$$

has the solution set $\{(x, x)\}=\operatorname{Span}\{(1,1)\} \subset \mathbb{R}^{2}$.

Parametric vector equations

In the previous example, every solution to the system

$$
2 x-4 y-8 z=0
$$

has the form

$$
(x, y, z)=c(2,1,0)+d(4,0,1)
$$

for some choice of scalars $c, d \in \mathbb{R}$. We call this a parametric vector equation of the plane.

Example

The system

$$
x-y=0
$$

has the solution set $\{(x, x)\}=\operatorname{Span}\{(1,1)\} \subset \mathbb{R}^{2}$. It has the parametric equation $\mathbf{x}=x(1,1)$, where x is a scalar.

Inhomogeneous solutions

We have a pretty good idea of how to describe the solution set of $A \mathbf{x}=\mathbf{0}$ in parametric form.

Inhomogeneous solutions

We have a pretty good idea of how to describe the solution set of $A \mathbf{x}=\mathbf{0}$ in parametric form. What about describing the solution set of $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b} \neq \mathbf{0}$?

Inhomogeneous solutions

We have a pretty good idea of how to describe the solution set of $A \mathbf{x}=\mathbf{0}$ in parametric form. What about describing the solution set of $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b} \neq \mathbf{0}$?

Example

Describe the solution set of $A \mathbf{x}=\mathbf{b}$ where $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ and
$\mathbf{b}=(3,6)$.

Inhomogeneous solutions

We have a pretty good idea of how to describe the solution set of $A \mathbf{x}=\mathbf{0}$ in parametric form. What about describing the solution set of $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b} \neq \mathbf{0}$?

Example

Describe the solution set of $A \mathbf{x}=\mathbf{b}$ where $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ and
$\mathbf{b}=(3,6)$. The augmented matrix is $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 0\end{array}\right]$.

Inhomogeneous solutions

We have a pretty good idea of how to describe the solution set of $A \mathbf{x}=\mathbf{0}$ in parametric form. What about describing the solution set of $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b} \neq \mathbf{0}$?

Example

Describe the solution set of $A \mathbf{x}=\mathbf{b}$ where $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ and $\mathbf{b}=(3,6)$. The augmented matrix is $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 0\end{array}\right]$.
Now write $x+2 y=3$, solve for the basic variable x, to get $x=3-2 y, y$ free.

Inhomogeneous solutions

We have a pretty good idea of how to describe the solution set of $A \mathbf{x}=\mathbf{0}$ in parametric form. What about describing the solution set of $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b} \neq \mathbf{0}$?

Example

Describe the solution set of $A \mathbf{x}=\mathbf{b}$ where $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ and $\mathbf{b}=(3,6)$. The augmented matrix is $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 0\end{array}\right]$.
Now write $x+2 y=3$, solve for the basic variable x, to get $x=3-2 y, y$ free. Solutions look like
$(x, y)=(3-2 y, y)=(3,0)+y(-2,1)$, where y is any number.

Solutions of inhomogeneous equations

Theorem

Let $A \mathbf{x}=\mathbf{b}$ be an inhomogeneous matrix equation, where A is a $m \times n$ matrix and $\mathbf{b} \neq \mathbf{0}$. Suppose that \mathbf{p} is a particular solution to the system. Consider the homogeneous system $A \mathbf{z}=\mathbf{0}$. Then every other solution \mathbf{w} of $A \mathbf{x}=\mathbf{b}$ has the form

$$
\mathbf{w}=\mathbf{p}+\mathbf{v}
$$

where \mathbf{v} is some solution to $A \mathbf{z}=\mathbf{0}$.

Solutions of inhomogeneous equations

Theorem

Let $A \mathbf{x}=\mathbf{b}$ be an inhomogeneous matrix equation, where A is a $m \times n$ matrix and $\mathbf{b} \neq \mathbf{0}$. Suppose that \mathbf{p} is a particular solution to the system. Consider the homogeneous system $A \mathbf{z}=\mathbf{0}$. Then every other solution \mathbf{w} of $A \mathbf{x}=\mathbf{b}$ has the form

$$
\mathbf{w}=\mathbf{p}+\mathbf{v}
$$

where \mathbf{v} is some solution to $A \mathbf{z}=\mathbf{0}$. Conversely, if \mathbf{v} is some solution to $A \mathbf{z}=\mathbf{0}$, then $\mathbf{p}+\mathbf{v}$ is a solution to $A \mathbf{x}=\mathbf{b}$

Solutions of inhomogeneous equations

Theorem

Let $A \mathbf{x}=\mathbf{b}$ be an inhomogeneous matrix equation, where A is a $m \times n$ matrix and $\mathbf{b} \neq \mathbf{0}$. Suppose that \mathbf{p} is a particular solution to the system. Consider the homogeneous system $A \mathbf{z}=\mathbf{0}$. Then every other solution \mathbf{w} of $A \mathbf{x}=\mathbf{b}$ has the form

$$
\mathbf{w}=\mathbf{p}+\mathbf{v}
$$

where \mathbf{v} is some solution to $A \mathbf{z}=\mathbf{0}$. Conversely, if \mathbf{v} is some solution to $A \mathbf{z}=\mathbf{0}$, then $\mathbf{p}+\mathbf{v}$ is a solution to $A \mathbf{x}=\mathbf{b}$

Proof.
Suppose that $A \mathbf{w}=\mathbf{b}=A \mathbf{p}$.

Solutions of inhomogeneous equations

Theorem

Let $A \mathbf{x}=\mathbf{b}$ be an inhomogeneous matrix equation, where A is a $m \times n$ matrix and $\mathbf{b} \neq \mathbf{0}$. Suppose that \mathbf{p} is a particular solution to the system. Consider the homogeneous system $\mathrm{Az}=\mathbf{0}$. Then every other solution \mathbf{w} of $A \mathbf{x}=\mathbf{b}$ has the form

$$
\mathbf{w}=\mathbf{p}+\mathbf{v}
$$

where \mathbf{v} is some solution to $A \mathbf{z}=\mathbf{0}$. Conversely, if \mathbf{v} is some solution to $A \mathbf{z}=\mathbf{0}$, then $\mathbf{p}+\mathbf{v}$ is a solution to $A \mathbf{x}=\mathbf{b}$

Proof.

Suppose that $A \mathbf{w}=\mathbf{b}=A \mathbf{p}$. Then we can subtract to obtain

$$
A(\mathbf{w}-\mathbf{p})=\mathbf{b}-\mathbf{b}=\mathbf{0}
$$

So $\mathbf{w}-\mathbf{p}=\mathbf{v}$ for some \mathbf{v} a solution of $A \mathbf{z}=\mathbf{0}$

Proof, ctd.

Proof.

Now suppose that \mathbf{p} is a particular solution to $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{v}=\mathbf{0}$.

Proof, ctd.

Proof.

Now suppose that \mathbf{p} is a particular solution to $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{v}=\mathbf{0}$. Then

$$
A(\mathbf{p}+\mathbf{v})=A \mathbf{p}+A \mathbf{v}=\mathbf{b}+\mathbf{0}=\mathbf{b} .
$$

Proof, ctd.

Proof.

Now suppose that \mathbf{p} is a particular solution to $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{v}=\mathbf{0}$. Then

$$
A(\mathbf{p}+\mathbf{v})=A \mathbf{p}+A \mathbf{v}=\mathbf{b}+\mathbf{0}=\mathbf{b} .
$$

Thus $\mathbf{p}+\mathbf{v}$ is a solution to $A \mathbf{x}=\mathbf{b}$ as well.

Proof, ctd.

Proof.

Now suppose that \mathbf{p} is a particular solution to $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{v}=\mathbf{0}$. Then

$$
A(\mathbf{p}+\mathbf{v})=A \mathbf{p}+A \mathbf{v}=\mathbf{b}+\mathbf{0}=\mathbf{b} .
$$

Thus $\mathbf{p}+\mathbf{v}$ is a solution to $A \mathbf{x}=\mathbf{b}$ as well.
The previous theorem shows that to describe the solutions of $A \mathbf{x}=\mathbf{b}$ takes two steps:

Proof, ctd.

Proof.

Now suppose that \mathbf{p} is a particular solution to $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{v}=\mathbf{0}$. Then

$$
A(\mathbf{p}+\mathbf{v})=A \mathbf{p}+A \mathbf{v}=\mathbf{b}+\mathbf{0}=\mathbf{b} .
$$

Thus $\mathbf{p}+\mathbf{v}$ is a solution to $A \mathbf{x}=\mathbf{b}$ as well.
The previous theorem shows that to describe the solutions of $A \mathbf{x}=\mathbf{b}$ takes two steps:
(1) find one particular solution \mathbf{p}, that is a vector \mathbf{p} such that $A \mathbf{p}=\mathbf{b}$;

Proof, ctd.

Proof.

Now suppose that \mathbf{p} is a particular solution to $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{v}=\mathbf{0}$. Then

$$
A(\mathbf{p}+\mathbf{v})=A \mathbf{p}+A \mathbf{v}=\mathbf{b}+\mathbf{0}=\mathbf{b}
$$

Thus $\mathbf{p}+\mathbf{v}$ is a solution to $A \mathbf{x}=\mathbf{b}$ as well.
The previous theorem shows that to describe the solutions of $A \mathbf{x}=\mathbf{b}$ takes two steps:
(1) find one particular solution \mathbf{p}, that is a vector \mathbf{p} such that $A \mathbf{p}=\mathbf{b}$;
(2) describe all solutions to the affiliated homogeneous system $A \mathbf{z}=\mathbf{0}$

Proof, ctd.

Proof.

Now suppose that \mathbf{p} is a particular solution to $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{v}=\mathbf{0}$. Then

$$
A(\mathbf{p}+\mathbf{v})=A \mathbf{p}+A \mathbf{v}=\mathbf{b}+\mathbf{0}=\mathbf{b}
$$

Thus $\mathbf{p}+\mathbf{v}$ is a solution to $A \mathbf{x}=\mathbf{b}$ as well.
The previous theorem shows that to describe the solutions of $A \mathbf{x}=\mathbf{b}$ takes two steps:
(1) find one particular solution \mathbf{p}, that is a vector \mathbf{p} such that $A \mathbf{p}=\mathbf{b}$;
(2) describe all solutions to the affiliated homogeneous system $A \mathbf{z}=\mathbf{0}$
The solutions set is then $\{\mathbf{p}+\mathbf{v}: A \mathbf{v}=\mathbf{0}\}$.

Row-column products (dot products)

We are going to simplify computations of matrix-vector products $A x$.

Row-column products (dot products)

We are going to simplify computations of matrix-vector products $A \mathbf{x}$.

Example

Let A be a $1 \times n$ matrix and let \mathbf{x} be in \mathbb{R}^{n}.

Row-column products (dot products)

We are going to simplify computations of matrix-vector products $A x$.

Example

Let A be a $1 \times n$ matrix and let \mathbf{x} be in \mathbb{R}^{n}. Then the columns of A are all in $\mathbb{R}^{1}=\mathbb{R}$, so $A \mathbf{x}$, a linear combination of these vectors, belongs to \mathbb{R}^{n} also.

Row-column products (dot products)

We are going to simplify computations of matrix-vector products $A x$.

Example

Let A be a $1 \times n$ matrix and let \mathbf{x} be in \mathbb{R}^{n}. Then the columns of A are all in $\mathbb{R}^{1}=\mathbb{R}$, so $A \mathbf{x}$, a linear combination of these vectors, belongs to \mathbb{R}^{n} also.

$$
\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right]=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}
$$

Row-column products (dot products)

We are going to simplify computations of matrix-vector products $A x$.

Example

Let A be a $1 \times n$ matrix and let \mathbf{x} be in \mathbb{R}^{n}. Then the columns of A are all in $\mathbb{R}^{1}=\mathbb{R}$, so $A \mathbf{x}$, a linear combination of these vectors, belongs to \mathbb{R}^{n} also.

$$
\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right]=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}
$$

We can repeat this operation with each row of a matrix.

