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Today’s lecture

We have seen that the solution sets to linear equations can often
be described as lines in the plane.

In today’s lecture we will make
this precise and extend it to cover systems with more free variables.
This will allow us to visually describe the solution set of a system
of linear equations. The notion of a vector will allow us to simplify
our description of solution sets, and the algebraic relationships
between vectors will reflect properties of the solution set.
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Loose ends

Yesterday we developed the row reduction algorithm, and I
mentioned that non-reduced echelon forms, while not super-helpful
for describing the solution set, can still answer
existence/uniqueness questions.

Let’s incorporate that useful
property into our row reduction algorithm.
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In order to solve a system of linear equations

(a) Write the augmented matrix of the system.

(b) Use steps 1-4 of the row reduction algorithm to obtain an
equivalent matrix in echelon form. Decide using the echelon
form if the system is consistent (no rows of the form[

0 0 · · · b
]
, b 6= 0). If inconsistent, stop.

(c) Otherwise, use step 5 of the row reduction algorithm to further
transform the matrix to its reduced echelon form.

(d) Write the system of equations corresponding to the reduced
echelon form.

(e) Rewrite each nonzero equation from the previous step so that
its one basic variable (corresponding to a pivot column) is
written in terms of the free variables, if any appear in that
equation.
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Another example of row reduction

Lets go through row reduction again to solve a system of linear
equations.

Suppose that we have the system

2w + 2x + y + 3z = 10

w + x + y + z = 6

w + x + 3y + 2z = 13

Lets find the solution set of this system. The augmented matrix of
the system is  2 1 3 2 10

1 1 1 1 6
1 3 2 1 13

 .

(The computer puts the w -column in the fourth column instead of
the first. Henceforth, the w -column is the fourth column.) We will
transform this to echelon form, use the echelon form to check if it
is consistent, and then, if it is consistent, further transform this to
reduced echelon form.
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Ex. of RRA, ctd.

 2 1 3 2 10
1 1 1 1 6
1 3 2 1 13


Step 1: Identify the first pivot column.

In this case, just the first
column of the matrix. The pivot position is first row, first column.
Step 2: Make sure that there is a nonzero entry in the pivot.
There is, and to make life easy we interchange the first and second
rows to get a 1 in the pivot position. 2 1 3 2 10

1 1 1 1 6
1 3 2 1 13

→
 1 1 1 1 6

2 1 3 2 10
1 3 2 1 13
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Ex. of RRA, ctd.

 1 1 1 1 6
2 1 3 2 10
1 3 2 1 13



Step 3 Now we clean out the two entries beneath the first pivot
position. Add −2 times the first row to the second row, add −1
times the first row to the third row. 1 1 1 1 6

2 1 3 2 10
1 3 2 1 13

→
 1 1 1 1 6

0 −1 1 0 −2
1 3 2 1 13

→
 1 1 1 1 6

0 −1 1 0 −2
0 2 1 0 7
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Ex. of RRA, ctd.
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Step 4 Now we repeat this with the matrix[
0 −1 1 0 −2
0 2 1 0 7

]
. The leftmost nonzero column is

[
−1
2

]
.

We add 2 times the row
[

0 −1 1 0 −2
]

to the row[
0 2 1 0 7

]
. 1 1 1 1 6

0 −1 1 0 −2
0 2 1 0 7

→
 1 1 1 1 6

0 −1 1 0 −2
0 0 3 0 3
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Ex. of RRA, ctd

 1 1 1 1 6
0 −1 1 0 −2
0 0 3 0 3



This matrix is in echelon form. Thus we can check to see if the
system is consistent by making sure there are no rows of the form[

0 0 0 b
]

with b nonzero. We can also see if there will be
free variables, by looking to see if every column but the last has a
pivot.
Step 5 That being done, we can proceed to transform the matrix
into reduced echelon form. The rightmost pivot position is third
row, third column. We scale this row by 1

3 to get a 1 in the pivot
position. 1 1 1 1 6

0 −1 1 0 −2
0 0 3 0 3

→
 1 1 1 1 6

0 −1 1 0 −2
0 0 1 0 1
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Ex. of RRA, ctd

 1 1 1 1 6
0 −1 1 0 −2
0 0 1 0 1



Now we clean out the column above the pivot in the third row,
third column, subtracting the third row from each other row. 1 1 1 1 6

0 −1 1 0 −2
0 0 1 0 1

→
 1 1 0 1 5

0 −1 0 0 −3
0 0 1 0 1
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Ex. of RRA, ctd.

 1 1 0 1 5
0 −1 0 0 −3
0 0 1 0 1



Now we look at the next pivot, in the second row and column.
Scale by −1 to get a 1 in the pivot position, then add −1 times
the new second row to the first row (you could add the row before
scaling, then scale the second row). 1 1 0 1 5

0 −1 0 0 −3
0 0 1 0 1

→
 1 0 0 1 2

0 1 0 0 −3
0 0 1 0 1
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Ex. of RRA, ctd.

 1 0 0 1 2
0 1 0 0 −3
0 0 1 0 1



Now the matrix is in reduced echelon form. We write down the
system of linear equations corresponding to this matrix:

x + w = 2

y = −3

z = 1

The basic variables are x , y , z corresponding to the three pivot
columns. The variable w is free because the fourth column is not a
pivot column.
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Ex. of RRA, ctd.

x + w = 2

y = −3

z = 1

We rewrite x in terms of the free variable w appearing in the first
equation, thus describing the solution set.

x = 2− w

y = −3

z = 1

w is free

If you’re into 4-dimensional space, this is a line in 4-dimensional
space.
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Vectors

We are going to describe the solution sets of systems of linear
equations using vectors.

Definition

A vector is a matrix with one column. Alternately, a vector is an
ordered list of real numbers.

Example

The following are vectors: 1
2
2

 ;

[
0
−1

]
6=
[
−1
0

]

The following are not vectors:

{1, 2} = {2, 1}, the concept of melancholy ,∞
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Notation for vectors

The notation for vectors varies somewhat depending on what
context you’re working in. Sometimes a vector is represented with
parentheses:

v =


v1
v2
...
vn

 = (v1, v2, . . . , vn).

When using this form, however, it is important to distinguish
between vectors, which are columns, and rows

v =
[
v1 v2 · · · vn

]
.

Rows are not the same as vectors. A row is a matrix with one
row. A vector is a matrix with one column. For our purposes the
word vector will always mean a column vector, even if we
sometimes write them horizontally, in which case we will use
parentheses to show that we mean to denote a vector.
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Operations with vectors: addition

There are two basic operations we can perform with vectors to
create new vectors.

This corresponds to generating new solutions
of linear systems from given solutions.

Definition

Let v =


v1
v2
...
vn

 and w =


w1

w2
...
wn

 be two vectors. Their sum

v + w is defined to be

v + w =


v1 + w1

v2 + w2
...

vn + wn

 .
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Operations with vectors: scaling

Definition

Let v = (v1, . . . , vn) be a vector. Suppose that c ∈ R is a real
number.

. The scalar multiple of v by c is the vector

cv = (cv1, . . . , cvn).

That is, cv is the vector obtained by multiplying each entry of v by
c .

Example

What is the multiple of v = (1, 2, 3) by 10? The produce is
10v = (10, 20, 30).
If v = (v1, . . . , vn) is a vector, what is the scalar product of v by 0.
0v = (0, 0, . . . , 0), for any vector v.
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R2;R3;Rn

We are going to work with the collection of all vectors of various
sizes.

Definition

The space of all ordered lists of two real numbers is denoted by R2

(read “r-two”). The space of all ordered lists of three real numbers
is denoted by R3 (read “r-three”). The space of all ordered lists of
n real numbers is denoted by Rn (read “r-n”).
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Visualizing vectors in R2

Adding vectors in R2 has a nice visual interpretation.

Remark

We can visualize vectors in R2 as points in the xy -plane, where v is
the point in the plane with x-coordinate v1 and y -coordinate v2.

Example

Here is the vector v = (6, 2.1) represented in the plane as the
point P
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Geometric picture of R2

Definition

If u and v are vectors represented as points in the plane, then
u + v is the fourth vertex of the parallelogram whose other vertices
are 0,u, and v.

Example

Let u = (2, 2) and v = (−6, 1). Then u + v is displayed along with
0,u, v.

Photo credit: my camera phone.
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There are a number of nice algebraic facts governing vector
addition and scalar multiplication.

Theorem

For all u, v,w ∈ Rn and all scalars c , d ∈ R the following are all
true:

(a) u + v = v + u

(b) (u + v) + w = u + (v + w)

(c) u + 0 = u = 0 + u

(d) u + (−1)u = 0 = (−1)u + u

(e) c(u + v) = cu + cv

(f) (c + d)u = cu + du

(g) c(du) = (cd)u

(h) 1u = u
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Linear combinations

We can repeat scalar multiplication and addition a bunch of times
to create new vectors from old.

Definition

Let v1, v2, . . . , vp ∈ Rn and scalars c1, c2, . . . , cp ∈ R.Then the
vector

y := c1v1 + . . . + cpvp

is called the linear combination of v1, . . . , vp with weights
c1, . . . , cp.

Example

What is the linear combination of v1 = (1, 1) and v2 = (1, 0) with
weights c1 = 2 and c2 = −1?

2(1, 1) + (−1)(1, 0) = (2, 2) + (−1, 0) = (1, 2).
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Solving vector equations

Suppose that we have vectors v1, v2, . . . , vp ∈ Rn.

We will be very
interested in determining when a given vector y can be written as
c1v1 + . . . + cpvp for some choice of weights c1, . . . , cp ∈ R. The
reason we care is that determining these weights is “the same as”
solving a system of linear equations.
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Solving vector equations, ctd.

Example

Let v = (2, 2) and w = (−1, 3).

Let’s Determine if the vector
y = (1, 0) can be written as a linear combination of v and w. If
cv + dw = (1, 0), then we have (2c , 2c) + (−d , 3d) = (1, 0). This
is equivalent to

2c − d = 1

2c + 3d = 0
.

This has augmented matrix[
2 −1 1
2 3 0

]
.

We can reduce by subtracting row 1 from row 2 to get an echelon
form. [

2 −1 1
2 3 0

]
→
[

2 −1 1
0 4 −1

]
.

Now we can decide if the system has a solution.
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is equivalent to

2c − d = 1

2c + 3d = 0
.

This has augmented matrix[
2 −1 1
2 3 0

]
.

We can reduce by subtracting row 1 from row 2 to get an echelon
form. [

2 −1 1
2 3 0

]
→
[

2 −1 1
0 4 −1

]
.

Now we can decide if the system has a solution.
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Vector equations

The previous example shows that determining when a vector
b = (b1, . . . , bn) ∈ Rn can be written as a linear combination of
some given given vectors a1, . . . , ap ∈ Rn, where ai = (ai1, . . . , a

i
n),

say b = x1a1 + . . . + xpap is equivalent to solving the system of
linear equations whose augmented matrix is[

a1 a2 · · · ap b
]

Any solution to this system is a set of weights (x1, . . . , xp) with∑n
i=1 xiai = b.
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Span{v}

The set of all vectors that we can obtain as linear combinations of
v1, . . . , vp ∈ Rn has a special name: the span of {v1, . . . , vp}

Definition

Suppose that v1, . . . , vp are vectors in Rn.

The set of all linear
combinations of v1, . . . , vp is denoted by Span{v1, . . . , vp} and is
called the subset of Rn spanned (or generated) by v1, . . . , vp.
So Span{v1, . . . , vp} is the collection of vectors y ∈ Rn which can
be written as

y = c1v1 + . . . + cpvp

for some choice of weights c1, . . . , cp ∈ R.
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The span of a subset

Example

Let v1 = (1, 0) ∈ R2 and let v2 = (0, 1) ∈ R2.

What is
Span{v1, v2} ⊂ R2? The span is the whole space R2, because
(x , y) ∈ R2 can be written as xv1 + yv2.

Example

What is the span in R3 of the set {(0, 0, 0}? The set
{(1, 0, 0), (0, 1, 0)}?
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