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Today’s lecture

1 We’ll talk about how to obtain projW v using orthonormal
bases.

2 We’ll introduce the least-squares approximation problem.

3 We’ll look at a few applications of least-squares
approximation.
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Orthogonal matrices

We have discussed finding projections of vectors on subspaces.

Theorem

If W ⊂ Rn is a subspace and B = {b1, . . . ,bp} is an orthogonal
basis for W , then for any v ∈ Rn:

1 the projection of v on W is given by

projW v =
v · b1
b1 · b1

b1 +
v · b2
b2 · b2

b2 + . . .+
v · bp
bp · bp

bp.

The vector projW v belongs to W and is the closest vector in
W to v.

2 the distance from v to W is

dist(v,W ) = ||v − projW v||.

When the basis is orthonormal then the formula becomes
simpler–the denominators are all 1.
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Orthogonal matrices

We have discussed finding projections of vectors on subspaces.

Theorem

If W ⊂ Rn is a subspace and B = {b1, . . . ,bp} is an orthonormal
basis for W , then for any v ∈ Rn:

1 the projection of v on W is given by

projW v = (v · b1)b1 + (v · b2)b2 + . . .+ (v · bp)bp.

The vector projW v belongs to W and is the closest vector in
W to v.

2 the distance from v to W is
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Orthogonal matrices

We can further simplify this computation. Let B = {b1, . . . ,bp} be
an orthonormal basis for W , and form the matrix U = [b1 . . .bp].
This matrix has orthonormal columns, so UTU = Ip. The matrix
UUT usually does not equal In, but it yields useful information.

Theorem

Let W ⊂ Rn and let B = {b1, . . . ,bp} be an orthonormal basis for
W , and form the matrix U = [b1 . . .bp]. Then for any v ∈ Rn, we
have

projW v = (UUT )v.

That is, to project a vector v onto the subspace W , one need only
multiply it on the left by the matrix UUT .
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Orthogonal matrices

Proof.

Notice that if v ∈ Rn then UTv =


b1 · v
b2 · v

...
bp · v

, by the row-column

rule for multiplying matrices.

Then

UUTv = U(UTv) (associative)

= U


b1 · v
b2 · v

...
bp · v


= (b1 · v)b1 + . . .+ (bp · ·v)bp (def. matrix-vector mult. )

= projW v (theorem)
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Orthogonal matrices

We can use this result to find distances to subspaces.

Let

A =


1 2 3
0 −1 2
1 −2 2
1 0 −5



and let b =


1
1
1
1

. Then you can check that b 6∈ colA; that is, the

system Ax = b is inconsistent.Let’s find the closest vector in colA
to b.
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Orthogonal matrices

The columns of A are orthogonal but they are not
orthonormal—the length of each vector isn’t 1.

We scale each
column by the reciprocal of its length, obtaining a new matrix U
with orthonormal columns

U =


1/
√

3 2/3 3/
√

42

0 −1/3 2/
√

42

1/
√

3 −2/3 2/
√

42

1/
√

3 0 −5/
√

42


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Orthogonal matrices

Now we can form the product UUT :

UT =

 1/
√

3 0 1/
√

3 1/
√

3
2/3 −1/3 −2/3 0

3/
√

42 2/
√

42 2/
√

42 −5/
√

42



UUT =


125/126 −5/63 2/63 −1/42
−5/63 13/63 20/63 −5/21
2/63 20/63 55/63 2/21
−1/42 −5/21 2/21 13/14

 .
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Orthogonal matrices

Now that we know UUT we can find projW v

projW v = UUTv

=


125/126 −5/63 2/63 −1/42
−5/63 13/63 20/63 −5/21
2/63 20/63 55/63 2/21
−1/42 −5/21 2/21 13/14




1
1
1
1



=


58/63
13/63
83/63
16/21


Thus the distance from v to W the distance from v to projW v.
This is

dist

v,


58/63
13/63
83/63
16/21


 = ||(5/63, 50/63,−20/63, 5/21)|| ≈ 0.891
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Least-squares

The idea of finding a vector in colA which is close to b given that
b does not belong to colA leads to a general question.

Definition

If A is an m × n matrix and b ∈ Rm, then a least-squares
solution to Ax = b is a vector x̂ ∈ Rn such that

||b− Ax̂|| ≤ ||b− Ax||

for all x ∈ Rn.

The idea is that a least-squares solution is usually not a solution to
Ax = b but it is as close as you can get to b with vectors of the
form Ax.

Dan Crytser Lecture 34 (?): Least squares and linear models



Least-squares

The idea of finding a vector in colA which is close to b given that
b does not belong to colA leads to a general question.

Definition

If A is an m × n matrix and b ∈ Rm, then a least-squares
solution to Ax = b is a vector x̂ ∈ Rn such that

||b− Ax̂|| ≤ ||b− Ax||

for all x ∈ Rn.

The idea is that a least-squares solution is usually not a solution to
Ax = b but it is as close as you can get to b with vectors of the
form Ax.

Dan Crytser Lecture 34 (?): Least squares and linear models



Least-squares

The idea of finding a vector in colA which is close to b given that
b does not belong to colA leads to a general question.

Definition

If A is an m × n matrix and b ∈ Rm, then a least-squares
solution to Ax = b is a vector x̂ ∈ Rn such that

||b− Ax̂|| ≤ ||b− Ax||

for all x ∈ Rn.

The idea is that a least-squares solution is usually not a solution to
Ax = b but it is as close as you can get to b with vectors of the
form Ax.

Dan Crytser Lecture 34 (?): Least squares and linear models



Least-squares

Proposition

If A is an m × n matrix and b ∈ Rm, then

b̂ = projcolA b

belongs to colA and any vector x̂ with Ax̂ = b̂ is a least-squares
solution to Ax = b.

This proposition says that there are least squares solutions but it
doesn’t give us a fast way to compute them.
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Least-squares

Definition

Let A be an m × n matrix and let b ∈ Rm. Then

ATAx = ATb

is a consistent system of equations called the normal equations of
the system Ax = b.

The normal equations are useful mainly as another way to view the
least-squares problem.

Theorem

The least-squares solutions to Ax = b are exactly the solutions of
the normal equations ATAx = ATb.
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Least-squares

Theorem

The least-squares solutions to Ax = b are exactly the solutions of
the normal equations ATAx = ATb.

Proof.

The vector x is a least-squares solution if and only if b− Ax is
orthogonal to the column space of A. But this means that each
column ci is orthogonal to b− Ax. This is the same as
ci · Ax = ci · b. This is equivalent to AT (Ax) = AT (b), by the
row-column rule for computing matrix products.
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Least-squares

What the theorem means: If you want to find the least squares
solutions to Ax = b, you just have to find the (actual) solutions to
ATAx = ATb.
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Least-squares

Now that all the theorems are out of the way we can solve some
least-squares problems.

Example

Let A =

[
1 1
2 2

]
and b =

[
1
1

]
. The system Ax = b is inconsistent,

so we solve the least-squares solution. The least-squares solutions
to Ax = b are the same as the (actual) solutions to ATAx = ATb.

The product ATA is

[
5 5
5 5

]
and ATb =

[
3
3

]
. The solutions to

ATAx = ATb are

{[
3/5 + x
−x

]
: x ∈ R

}
. These are the

least-squares solutions to Ax = b: each minimizes the error
||Ax− b||.
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Least-squares

We find the least square solution to Ax = b, where

A =

1 −3 −3
1 5 1
1 7 2

 and b =

 −3
−65
−28

.

Here

ATA =

3 9 0
9 83 28
0 28 14


and ATb =

 −3
−65
−28

.The general solution to ATAx = ATb is

x1 = 2 + 3
2x3, x2 = −1− 1

2x3 and x3 free. We can set x3 = 0 to get
a least-squares solution:

x̂ =

 2
−1
0

 .
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Least-squares

In the previous example, the set of least-squares solutions was
infinite. There is a theorem that describes when the least-squares
solution to any system Ax = b is unique:

Theorem

Let A be an m × n matrix. The following statements are
equivalent:

1 for all b ∈ Rm, there is a unique least-squares solution to
Ax = b;

2 the columns of A are linearly independent;

3 the matrix ATA is invertible.

If these hold then for any b ∈ Rm the least-squares solution to
Ax = b is given by x̂ = (ATA)−1ATb.

You can think of this as a kind of “Invertible Matrix Theorem for
non-square matrices.”
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Least-squares

If A =

1 2
0 2
0 2

 then for any b ∈ R3, there is a unique least-squares

solution to Ax = b.
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Least-squares

Solving least-squares problems involving A is sped up considerably
when you have a QR factorization for A.

Theorem

Let A be an m × n matrix with linearly independent columns and
suppose A = QR is a least-squares factorization for A.Then for any
b ∈ Rm the least-squares solution to Ax = b is unique and given by

x̂ = R−1(QTb).

The closest vector to b in colA is (QQT )b.
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Least-squares

Let A =

1 2
1 3
1 2

 and let b =

1
1
0

.

We have a QR factorization

A =

1/
√

3 −1/
√

6

1/
√

3
√

2/3

1/
√

3 −1/
√

6


︸ ︷︷ ︸

Q

[√
3 7/

√
3

0
√

2/3

]
︸ ︷︷ ︸

R

.

Then take

QTb =

[
2/(3
√

3)

−1/(6
√

6) +
√

2/3

]
.

Now the least squares solution is

x̂ = R−1

[
2/(3
√

3)

−1/(6
√

6) +
√

2/3

]
=

[
1/2
1/2

]
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Modeling with least squares

In science/stats/econ you often have three things:

1 some experimental data

2 a mathematical model you have chosen to model the data

3 some parameters which control what the mathematical model
looks like

You want to pick the right parameters to make your model
approximate the data as closely as possible.
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Modeling

Example

Let’s say you want to mathematically model how the height of a
tree varies with its age. You collect four data points, each of which
consists of an ordered pair of the form

(age of tree in years, height of tree in meters) .

Let t denote age and h denote height. Let’s say the data you
collect are
(t1, h1) = (1, 2), (t2, h2) = (2, 3), (t3, h3) = (4, 7), (t4, h4) = (5, 9).
Your teacher suggests that you model the data with a quadratic
function

h = β0 + β1t + β2t
2.

This is the model. Then the parameters are β0, β1, β2. You have
control over the parameters: you can set them however you like in
order to most closely approximate the data.
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Modeling

What does “most closely approximate the data” mean in this
context? Basically it means that you are doing a least squares
problem.

The height data form an observation vector:

y =


h1
h2
h3
h4

 .
The model you have selected (quadratic) along with the ages of
the trees determine a design matrix, which is denoted by X :

X =


1 t1 (t1)2

1 t2 (t2)2

1 t3 (t3)2

1 t4 (t4)2

. Parameters form a parameter vector as

β =

β0β1
β2

 .
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Modeling

Now we can state the basic idea behind modeling problems with
least-squares: you should pick the parameter vector β which makes
the “prediction vector” Xβ as close to the observed vector y as
possible.

That is, least-squares parameters β0, β1, β2 are exactly
the entries of the least-squares solution to Xx = y, where X is the
design matrix and y is the observation vector.
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Modeling

Now we can find the least-squares solution for the tree-height

problem. The observation vector is the list of heights: y =


2
3
7
9

.

The design matrix is obtained by plugging in t1 = 1, t2 = 2,
t3 = 4, t4 = 5 into the matrix from before:

X =


1 1 1
1 2 4
1 4 16
1 5 25

 .

The least-squares solution to Xx = y is β =

β0β1
β2

 =

0.933
0.8

0.167

. So

the least-squares model is h(t) = 0.933 + 0.8t + 0.167t2.
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X =


1 1 1
1 2 4
1 4 16
1 5 25

 .

The least-squares solution to Xx = y is β =

β0β1
β2

 =

0.933
0.8

0.167

.

So

the least-squares model is h(t) = 0.933 + 0.8t + 0.167t2.
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Modeling

Let’s pause to review how to construct the design matrix and the
observation vector. You are assuming that there is some dependent
variable y , some independent variable t (could be more than one),
and that there is some relation y =

∑q
i=0 βi fi , where fi are

functions of the independent variable fi = fi (t).

In the previous
example we have f0(t) = 1, f1(t) = t, f2(t) = t2. That’s the model.
The experimental data comes to you as a list of observations
(t1, y1), (t2, y2), . . . , (tm, ym), where tk is some specific value of the
independent variable and yk is the value of the dependent variable
you observe at when the independent variable is tk .
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Modeling

In this case the observation vector is just the list of y values:

y =

 y1
y2

. . . ym



The design matrix X has one column for each parameter βi , and
the ith column of X is just 

fi (t1)
fi (t2)

...
fq(tm)

 .
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Modeling

Let’s do another example. Suppose that you have experimental
data (1, 7.9), (2, 5.4), (3,−.9) and you wish to model this data as

y = A cos x + B sin x

where A,B ∈ R. How do we do that?
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Modeling: y = A cos x + B sin x

The data are
(x1, y1) = (1, 7.9), (x2, y2) = (2, 5.4), (x3, y3) = (3,−.9).

So we

can write the observation vector as y =

7.9
5.4
−.9

. The two functions

are f1(x) = cos(x) and f2(x) = sin(x). Thus the design matrix is

X =

f1(x1) f2(x1)
f1(x2) f2(x2)
f1(x3) f2(x3)

 =

 0.54 0.84
−0.42 0.91
−0.99 0.14

 .

So we need to find the least squares solution to Xx =

7.9
5.4
−.9

. The

least-squares solution is x̂ =

[
2.34
7.45

]
. So the best model is

y = 2.34 cos(x) + 7.45 sin(x).

Dan Crytser Lecture 34 (?): Least squares and linear models



Modeling: y = A cos x + B sin x

The data are
(x1, y1) = (1, 7.9), (x2, y2) = (2, 5.4), (x3, y3) = (3,−.9). So we

can write the observation vector as y =

7.9
5.4
−.9

.

The two functions

are f1(x) = cos(x) and f2(x) = sin(x). Thus the design matrix is

X =

f1(x1) f2(x1)
f1(x2) f2(x2)
f1(x3) f2(x3)

 =

 0.54 0.84
−0.42 0.91
−0.99 0.14

 .

So we need to find the least squares solution to Xx =

7.9
5.4
−.9

. The

least-squares solution is x̂ =

[
2.34
7.45

]
. So the best model is

y = 2.34 cos(x) + 7.45 sin(x).

Dan Crytser Lecture 34 (?): Least squares and linear models



Modeling: y = A cos x + B sin x

The data are
(x1, y1) = (1, 7.9), (x2, y2) = (2, 5.4), (x3, y3) = (3,−.9). So we

can write the observation vector as y =

7.9
5.4
−.9

. The two functions

are f1(x) = cos(x) and f2(x) = sin(x). Thus the design matrix is

X =

f1(x1) f2(x1)
f1(x2) f2(x2)
f1(x3) f2(x3)

 =

 0.54 0.84
−0.42 0.91
−0.99 0.14

 .

So we need to find the least squares solution to Xx =

7.9
5.4
−.9

. The

least-squares solution is x̂ =

[
2.34
7.45

]
. So the best model is

y = 2.34 cos(x) + 7.45 sin(x).

Dan Crytser Lecture 34 (?): Least squares and linear models



Modeling: y = A cos x + B sin x

The data are
(x1, y1) = (1, 7.9), (x2, y2) = (2, 5.4), (x3, y3) = (3,−.9). So we

can write the observation vector as y =

7.9
5.4
−.9

. The two functions

are f1(x) = cos(x) and f2(x) = sin(x). Thus the design matrix is

X =

f1(x1) f2(x1)
f1(x2) f2(x2)
f1(x3) f2(x3)

 =

 0.54 0.84
−0.42 0.91
−0.99 0.14

 .

So we need to find the least squares solution to Xx =

7.9
5.4
−.9

.

The

least-squares solution is x̂ =

[
2.34
7.45

]
. So the best model is

y = 2.34 cos(x) + 7.45 sin(x).

Dan Crytser Lecture 34 (?): Least squares and linear models



Modeling: y = A cos x + B sin x

The data are
(x1, y1) = (1, 7.9), (x2, y2) = (2, 5.4), (x3, y3) = (3,−.9). So we

can write the observation vector as y =

7.9
5.4
−.9

. The two functions

are f1(x) = cos(x) and f2(x) = sin(x). Thus the design matrix is

X =

f1(x1) f2(x1)
f1(x2) f2(x2)
f1(x3) f2(x3)

 =

 0.54 0.84
−0.42 0.91
−0.99 0.14

 .

So we need to find the least squares solution to Xx =

7.9
5.4
−.9

. The

least-squares solution is x̂ =

[
2.34
7.45

]
. So the best model is

y = 2.34 cos(x) + 7.45 sin(x).

Dan Crytser Lecture 34 (?): Least squares and linear models


