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Today’s lecture

Yesterday we sort of saw a way to solve systems of linear equations
by manipulating rows in the affiliated augmented matrix. A lot of
arbitrary decisions on what operations to perform were made.
Today we will make these choices seem a lot less arbtirary, refining
method into a row reduction algorithm. This will allow us to easily
determine if a given system is consistent, and it will tell us how
best to describe the solution set.
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Leading entries

The algorithm we will describe involves a lot of manipulation of the
leading entries of rows of matrices.

The leading entry of a nonzero
row of a matrix is the leftmost nonzero entry in that row.

Example

Consider the matrix  0 7 0 3
1 3 0 1
0 0 0 0

 .

1 The leading entry of the first row is the 7 in the second
column.

2 The leading entry of the second row is the 1 in the first
column.

3 The third row does not have a leading entry–they are all zero.
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Echelon form

This definition is big and unwieldy; the examples are easy.

Definition

A matrix is in echelon form if it has the following three properties:

1 All nonzero rows are above any zero rows.

2 Each leading entry (leftmost nonzero entry) of a row is to the
right of the leading entry of the row above it.

3 All entries in a column below a leading entry are zero.

A matrix is in reduced echelon form if it satisfies these three as
well as:

4 The leading entry in each nonzero row is 1.

5 Each leading 1 is the only nonzero entry in its column.

Dan Crytser Row reduction and echelon forms



Echelon form

This definition is big and unwieldy; the examples are easy.

Definition

A matrix is in echelon form if it has the following three properties:

1 All nonzero rows are above any zero rows.

2 Each leading entry (leftmost nonzero entry) of a row is to the
right of the leading entry of the row above it.

3 All entries in a column below a leading entry are zero.

A matrix is in reduced echelon form if it satisfies these three as
well as:

4 The leading entry in each nonzero row is 1.

5 Each leading 1 is the only nonzero entry in its column.

Dan Crytser Row reduction and echelon forms



Echelon form

This definition is big and unwieldy; the examples are easy.

Definition

A matrix is in echelon form if it has the following three properties:

1 All nonzero rows are above any zero rows.

2 Each leading entry (leftmost nonzero entry) of a row is to the
right of the leading entry of the row above it.

3 All entries in a column below a leading entry are zero.

A matrix is in reduced echelon form if it satisfies these three as
well as:

4 The leading entry in each nonzero row is 1.

5 Each leading 1 is the only nonzero entry in its column.

Dan Crytser Row reduction and echelon forms



Echelon form

This definition is big and unwieldy; the examples are easy.

Definition

A matrix is in echelon form if it has the following three properties:

1 All nonzero rows are above any zero rows.

2 Each leading entry (leftmost nonzero entry) of a row is to the
right of the leading entry of the row above it.

3 All entries in a column below a leading entry are zero.

A matrix is in reduced echelon form if it satisfies these three as
well as:

4 The leading entry in each nonzero row is 1.

5 Each leading 1 is the only nonzero entry in its column.

Dan Crytser Row reduction and echelon forms



Echelon form

This definition is big and unwieldy; the examples are easy.

Definition

A matrix is in echelon form if it has the following three properties:

1 All nonzero rows are above any zero rows.

2 Each leading entry (leftmost nonzero entry) of a row is to the
right of the leading entry of the row above it.

3 All entries in a column below a leading entry are zero.

A matrix is in reduced echelon form if it satisfies these three as
well as:

4 The leading entry in each nonzero row is 1.

5 Each leading 1 is the only nonzero entry in its column.

Dan Crytser Row reduction and echelon forms



Echelon form

This definition is big and unwieldy; the examples are easy.

Definition

A matrix is in echelon form if it has the following three properties:

1 All nonzero rows are above any zero rows.

2 Each leading entry (leftmost nonzero entry) of a row is to the
right of the leading entry of the row above it.

3 All entries in a column below a leading entry are zero.

A matrix is in reduced echelon form if it satisfies these three as
well as:

4 The leading entry in each nonzero row is 1.

5 Each leading 1 is the only nonzero entry in its column.

Dan Crytser Row reduction and echelon forms



Echelon form

This definition is big and unwieldy; the examples are easy.

Definition

A matrix is in echelon form if it has the following three properties:

1 All nonzero rows are above any zero rows.

2 Each leading entry (leftmost nonzero entry) of a row is to the
right of the leading entry of the row above it.

3 All entries in a column below a leading entry are zero.

A matrix is in reduced echelon form if it satisfies these three as
well as:

4 The leading entry in each nonzero row is 1.

5 Each leading 1 is the only nonzero entry in its column.

Dan Crytser Row reduction and echelon forms



Echelon form

This definition is big and unwieldy; the examples are easy.

Definition

A matrix is in echelon form if it has the following three properties:

1 All nonzero rows are above any zero rows.

2 Each leading entry (leftmost nonzero entry) of a row is to the
right of the leading entry of the row above it.

3 All entries in a column below a leading entry are zero.

A matrix is in reduced echelon form if it satisfies these three as
well as:

4 The leading entry in each nonzero row is 1.

5 Each leading 1 is the only nonzero entry in its column.

Dan Crytser Row reduction and echelon forms



Examples of echelon forms

Example

Check out this matrix  2 8 1 0
0 0 1 2
0 0 0 0



Is it in echelon form? reduced echelon form? 1 −3 0 7
0 0 0 7
0 0 1 0


Same question.  1 0 0 7

0 1 0 7
0 0 1 0


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Row-equivalence of matrices

The elementary row operations on matrices are:

1 Add a multiple of one row to another.
2 Switch the positions of two rows.
3 Scale any row by any nonzero number.

Definition

We say that matrices A and B are row-equivalent if B is obtained
by performing elementary operations on A. (Or vice versa: row
operations are reversible.)

Example

The matrices

A =

[
1 1 2
2 2 4

]
and B =

[
1 1 2
0 0 0

]
are row-equivalent: we can add −2 times the first row of A to the
second row of A to obtain B.
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Why row-equivalence matters

Theorem

Suppose that A and B are the augmented matrices of two systems
of linear equations. If A and B are row-equivalent, then the two
systems have the same solution sets.

The matrices [
1 1 2
2 2 4

]
and

[
1 1 2
0 0 0

]
are row-equivalent. So

x + y = 2

2x + 2y = 4

and

x + y = 2

have the same solution sets (line through (0, 2) and (2, 0)).
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Why echelon form is so great

Finding echelon forms is useful because if a system has augmented
matrix in reduced echelon form, we will see that it is very easy to
describe the solution set of the system.

Theorem

Let A be a matrix. Then there is a unique matrix U in reduced
echelon form which is row-equivalent to A.

If A is a matrix, then we call the unique U in this theorem the
reduced echoelon form of A. Our goal in this section is to develop
a technique for systematically transforming matrices, via
elementary row operations, to reduced echelon form.
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Pivot positions; pivot columns

Definition

A pivot position in a matrix A is a location (row and column) in A
that corresponds to a leading 1 in the reduced echelon form of A.

A pivot column is a column of A that contains a pivot position.

Example

The reduced echelon form of A =

[
1 1 2
2 2 4

]
is

U =

[
1 1 2
0 0 0

]
. The only leading one in the reduced echelon

form is in the first column and first row. So the only pivot position
of A is in the first row and first column, and the only pivot column
of A is the first column.
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Example: The row reduction algorithm

Let

A =


0 −3 −6 4 9
−1 −2 −1 3 1
−2 −3 0 3 −1
1 4 5 −9 −7



We are going to find the reduced echelon form of A using the row
reduction algorithm.
Step 1: Begin with the leftmost nonzero column. This is a pivot
column. There is a pivot position at the top of this column.
Step 2: Swap rows to make sure there is a nonzero entry in this
position.

A =


0 −3 −6 4 9
−1 −2 −1 3 1
−2 −3 0 3 −1
1 4 5 −9 −7

→


1 4 5 −9 −7
−1 −2 −1 3 1
−2 −3 0 3 −1
0 −3 −6 4 9

 .
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0 −3 −6 4 9
−1 −2 −1 3 1
−2 −3 0 3 −1
1 4 5 −9 −7

→


1 4 5 −9 −7
−1 −2 −1 3 1
−2 −3 0 3 −1
0 −3 −6 4 9

 .
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Example: row reduction algorithm, ctd.


1 4 5 −9 −7
−1 −2 −1 3 1
−2 −3 0 3 −1
0 −3 −6 4 9


Step 3:

Use row replacement to create zeros in positions below
the pivot positions. (Add multiples of the first row to the rows
containing zeros in the first column.) Here, we add 1 times the first
row to the second row, and 2 times the first row to the third row.

1 4 5 −9 −7
−1 −2 −1 3 1
−2 −3 0 3 −1
0 −3 −6 4 9

→


1 4 5 −9 −7
0 2 4 −6 −6
0 5 10 −15 −15
0 −3 −6 4 9


Now below the first pivot position there are no nonzero entries.
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Row reduction algorithm, ctd.


1 4 5 −9 −7
0 2 4 −6 −6
0 0 0 0 0
0 0 0 −5 0


Now we ignore the two top rows and look at the matrix that
remains. The leftmost nonzero column is the fourth column. We
repeat steps 1− 3: all that we have to do is interchange the third
and fourth rows.

1 4 5 −9 −7
0 2 4 −6 −6
0 0 0 0 0
0 0 0 −5 0

→


1 4 5 −9 −7
0 2 4 −6 −6
0 0 0 −5 0
0 0 0 0 0



Now the matrix is in echelon form. This completes steps 1− 4.
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Row reduction algorithm, ctd.


1 4 5 −9 −7
0 2 4 −6 −6
0 0 0 −5 0
0 0 0 0 0



We transform this into reduced echelon form: all the leading
entries should be equal to 1, and the columns containing the
leading entries only have 0s, except for the leading entries.
Step 5: Beginning with the rightmost pivot, create zeros above
each pivot position. If necessary, first scale rows containing pivot
positions to make the pivots equal 1.
We scale the third row by −1

5 , then add 6 times this new third row
to the second row and 9 times the new third row to the first row.

1 4 5 −9 −7
0 2 4 −6 −6
0 0 0 −5 0
0 0 0 0 0

→


1 4 5 0 −7
0 2 4 0 −6
0 0 0 1 0
0 0 0 0 0

 .
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Row reduction algorithm, ctd.


1 4 5 0 −7
0 2 4 0 −6
0 0 0 1 0
0 0 0 0 0



The next pivot position is in the second row, second column. We
scale the second row by 1

2 to get a 1 in the pivot position, then
add −4 times this new second row to the first row to eliminate the
4 above the pivot position.

1 4 5 0 −7
0 2 4 0 −6
0 0 0 1 0
0 0 0 0 0

→


1 0 −3 0 5
0 1 2 0 −3
0 0 0 1 0
0 0 0 0 0


This matrixis in reduced echelon form: the leading entries are 1, no
nonzero entries above the leading entries. The three pivot
positions are: first row/first column, second row/second column,
and third row/fourth column.
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Forward and backward phases of the row reduction
algorithm

We have just described the row reduction algorithm.

1 Steps 1− 4 are called the forward phase of the row reduction
algorithm. They transform a matrix into (possibly
non-reduced) echelon form.

2 Step 5 is called the backward phase of the algorithm. It
converts the echelon form into a reduced echelon form.
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Solutions to linear systems

We want to use the row reduction algorithm to solve systems of
linear equations.

The reduced echelon form of the augmented
matrix of a linear system gives a tidy description of the solution set.

Example

The augmented matrix
0 −3 −6 4 9
−1 −2 −1 3 1
−2 −3 0 3 −1
1 4 5 −9 −7


corresponds to the system

−3x2 − 6x3 + 4x4 = 9

−x1 − 2x2 − x3 + 3x4 = 1

−2x1 − 3x2 + 3x4 = −1

x1 + 4x2 + 5x3 − 9x4 = −7
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Solutions to linear systems, ctd.

Example

We converted
0 −3 −6 4 9
−1 −2 −1 3 1
−2 −3 0 3 −1
1 4 5 −9 −7

→


1 0 −3 0 5
0 1 2 0 −3
0 0 0 1 0
0 0 0 0 0



This echelon form corresponds to the system

x1 − 3x3 = 5

x2 + 2x3 = −3

x4 = 0
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Solutions to linear systems, ctd.


1 0 −3 0 5
0 1 2 0 −3
0 0 0 1 0
0 0 0 0 0



When dealing with the system

x1 − 3x3 = 5

x2 + 2x3 = −3

x4 = 0

we sort the variables x1, x2, x3, x4 into two categories.

1 The variables corresponding to pivot positions in the matrix
are basic variables: in this case x1, x2, x4.

2 The other variables are called free variables: in this case: x3 is
free.
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Solutions to linear systems, ctd.

We have:

x1 − 3x3 = 5

x2 + 2x3 = −3

x4 = 0

Basic variables: x1, x2, x4. Free variables: x3. We write the basic
variables in terms of the free variables, and that describes the
solution set: 

x1 = = 5 + 3x3
x2 = −3− 2x3
x3 is free

x4 = 0

Any value of x3 is permitted, and the other entries in the solution
are dictated by the value of x3 We say that this is a parametric
description of the solution set, where the free variable x3 is the
parameter–the thing which is allowed to vary.
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Solutions to linear systems, ctd.

To summarize the preceding: The system

−3x2 − 6x3 + 4x4 = 9

−x1 − 2x2 − x3 + 3x4 = 1

−2x1 − 3x2 + 3x4 = −1

x1 + 4x2 + 5x3 − 9x4 = −7

is equivalent to the system

x1 − 3x3 = 5

x2 + 2x3 = −3

x4 = 0

The solution set of both systems is described by:
x1 = 5 + 3x3
x2 = −3− 2x3
x3 is free
x4 = 0
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Existence/uniqueness with echelon forms

You might ask: why do we ever care about the echelon form of a
matrix?

The solution set is described using the reduced echelon
form of the augmented matrix of the system. That’s true, and the
echelon form doesn’t describe the solutions of the system. It
answers existence/uniqueness questions though.
Existence: the system has a solution if the echelon form of its
augmented matrix has no rows like[

0 0 · · · b
]

with b 6= 0

Uniqueness: Assuming the system is consistent, then it has
unique solution if every column (of the echelon form of its
augmented matrix) except the last contains a leading entry.
Otherwise, it has infinitely many solutions.
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Example: existence and uniqueness with echelon forms

Example

Suppose that we have a linear system whose augmented matrix we
have reduced to the echelon form 2 2 0 0

0 7 −1 1
0 0 0 10

 .

Does there exist a solution to the system?

What about if the
echelon form is  2 2 0 0

0 7 −1 1
0 0 0 0


In this case, is the solution unique?
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