Math 22: Linear Algebra

Danny W. Crytser
Dartmouth College

March 24, 2014

What is a linear equation?

What is a linear equation?

A linear equation is an equation of the form

$$
a_{1} x_{1}+\ldots+a_{n} x_{n}=c
$$

where the a_{1}, \ldots, a_{n} are fixed coefficients, the x_{1}, \ldots, x_{n} are variables, and c is a constant.

What is a linear equation?

A linear equation is an equation of the form

$$
a_{1} x_{1}+\ldots+a_{n} x_{n}=c
$$

where the a_{1}, \ldots, a_{n} are fixed coefficients, the x_{1}, \ldots, x_{n} are variables, and c is a constant.

Example

$$
7 x+3 y=2
$$

is a linear equation.

What is a linear equation?

A linear equation is an equation of the form

$$
a_{1} x_{1}+\ldots+a_{n} x_{n}=c
$$

where the a_{1}, \ldots, a_{n} are fixed coefficients, the x_{1}, \ldots, x_{n} are variables, and c is a constant.

Example

$$
7 x+3 y=2
$$

is a linear equation.

Example

$$
\sqrt{x}+\sin (y)=1
$$

is not a linear equation.

What is a system of linear equations?

A system of linear equations is just a collection of linear equations using the same variables,

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=c_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=c_{2} \\
\vdots \quad \vdots \quad \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=c_{m}
\end{gathered}
$$

What is a system of linear equations?

A system of linear equations is just a collection of linear equations using the same variables,

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=c_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=c_{2} \\
\vdots \quad \vdots \quad \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=c_{m}
\end{gathered}
$$

Example

Here is a system of linear equations with the variables x, y.

$$
\begin{array}{r}
2 x+7 y=1 \\
x+3 y=0
\end{array}
$$

Solutions; solution sets

Lets say we have a system of linear equations.

Solutions; solution sets

Lets say we have a system of linear equations. A solution to the system is a list of numbers $\left(s_{1}, \ldots, s_{n}\right)$, one for each variable, such that if we substitute each s_{i} for the correpsonding x_{i}, each of the equations is still true.

Solutions; solution sets

Lets say we have a system of linear equations. A solution to the system is a list of numbers $\left(s_{1}, \ldots, s_{n}\right)$, one for each variable, such that if we substitute each s_{i} for the correpsonding x_{i}, each of the equations is still true. The collection of all such solutions is called the solution set.

Example

Solutions; solution sets

Lets say we have a system of linear equations. A solution to the system is a list of numbers $\left(s_{1}, \ldots, s_{n}\right)$, one for each variable, such that if we substitute each s_{i} for the correpsonding x_{i}, each of the equations is still true. The collection of all such solutions is called the solution set.

Example

For the system:

$$
\begin{array}{r}
2 x+7 y=1 \\
x+3 y=0
\end{array}
$$

the list $(-3,1)$ is a solution:

Solutions; solution sets

Lets say we have a system of linear equations. A solution to the system is a list of numbers $\left(s_{1}, \ldots, s_{n}\right)$, one for each variable, such that if we substitute each s_{i} for the correpsonding x_{i}, each of the equations is still true. The collection of all such solutions is called the solution set.

Example

For the system:

$$
\begin{array}{r}
2 x+7 y=1 \\
x+3 y=0
\end{array}
$$

the list $(-3,1)$ is a solution:

$$
\begin{array}{r}
2(-3)+7(1)=1 \\
-3+3(1)=0
\end{array}
$$

Solutions; solution sets

Lets say we have a system of linear equations. A solution to the system is a list of numbers $\left(s_{1}, \ldots, s_{n}\right)$, one for each variable, such that if we substitute each s_{i} for the correpsonding x_{i}, each of the equations is still true. The collection of all such solutions is called the solution set.

Example

For the system:

$$
\begin{array}{r}
2 x+7 y=1 \\
x+3 y=0
\end{array}
$$

the list $(-3,1)$ is a solution:

$$
\begin{array}{r}
2(-3)+7(1)=1 \\
-3+3(1)=0
\end{array}
$$

The solution set is $\{(-3,1)\}-$ no other solutions are possible.

Solving equations

Q: How many solutions are there?

Solving equations

Q: How many solutions are there? A: In general there are three options for the solution set:

Solving equations

Q: How many solutions are there? A: In general there are three options for the solution set:
(1) it can be empty, i.e. the system has no solutions;

Solving equations

Q: How many solutions are there? A: In general there are three options for the solution set:
(1) it can be empty, i.e. the system has no solutions;
(2) it can consist of one solution, i.e. the system has a unique solution;

Solving equations

Q: How many solutions are there? A: In general there are three options for the solution set:
(1) it can be empty, i.e. the system has no solutions;
(2) it can consist of one solution, i.e. the system has a unique solution;
(3) it can contain infinitely many solutions.

Solving equations

Q: How many solutions are there? A: In general there are three options for the solution set:
(1) it can be empty, i.e. the system has no solutions;
(2) it can consist of one solution, i.e. the system has a unique solution;
(3) it can contain infinitely many solutions.

Solving equations

Q: How many solutions are there? A: In general there are three options for the solution set:
(1) it can be empty, i.e. the system has no solutions;
(2) it can consist of one solution, i.e. the system has a unique solution;
(3) it can contain infinitely many solutions.

The book has a nice illustration of these possibilities for the case when there are $n=2$ variables

Solving equations

Q: How many solutions are there? A: In general there are three options for the solution set:
(1) it can be empty, i.e. the system has no solutions;
(2) it can consist of one solution, i.e. the system has a unique solution;
(3) it can contain infinitely many solutions.

The book has a nice illustration of these possibilities for the case when there are $n=2$ variables (parallel, skew, and identical lines).

How do we find the solutions?

In general, our strategy is to replace the given system with an equivalent system: a new system of linear equations which has exactly the same solution set.

How do we find the solutions?

In general, our strategy is to replace the given system with an equivalent system: a new system of linear equations which has exactly the same solution set.

How do we find $(-3,1)$ as the solution of the previous system?

How do we find $(-3,1)$ as the solution of the previous system?

$$
\begin{array}{r}
2 x+7 y=1 \\
x+3 y=0
\end{array}
$$

How do we find $(-3,1)$ as the solution of the previous system?

$$
\begin{array}{r}
2 x+7 y=1 \\
x+3 y=0
\end{array}
$$

Swap the equations

$$
\begin{array}{r}
x+3 y=0 \\
2 x+7 y=1
\end{array}
$$

How do we find $(-3,1)$ as the solution of the previous system?

$$
\begin{array}{r}
2 x+7 y=1 \\
x+3 y=0
\end{array}
$$

Swap the equations

$$
\begin{array}{r}
x+3 y=0 \\
2 x+7 y=1
\end{array}
$$

Now subtract -2 times the first equation from the second equation:

$$
\begin{aligned}
x+3 y & =0 \\
0+y & =1
\end{aligned}
$$

How do we find $(-3,1)$ as the solution of the previous system?

$$
\begin{array}{r}
2 x+7 y=1 \\
x+3 y=0
\end{array}
$$

Swap the equations

$$
\begin{array}{r}
x+3 y=0 \\
2 x+7 y=1
\end{array}
$$

Now subtract -2 times the first equation from the second equation:

$$
\begin{aligned}
x+3 y & =0 \\
0+y & =1
\end{aligned}
$$

Now subtract 3 times the second equation from the first row:

$$
\begin{aligned}
& x+0=-3 \\
& 0+y=1
\end{aligned}
$$

The solution to this system is $(-3,1)$.

Matrices

In the previous example: a lot of excess notation. How to get rid of it?

Matrices

In the previous example: a lot of excess notation. How to get rid of it? Matrix notation instead.

Matrices

In the previous example: a lot of excess notation. How to get rid of it? Matrix notation instead.
Example
The system

$$
\begin{array}{r}
2 x+7 y=1 \\
x+3 y=0
\end{array}
$$

has two matrices affiliated to it:

Matrices

In the previous example: a lot of excess notation. How to get rid of it? Matrix notation instead.

Example

The system

$$
\begin{array}{r}
2 x+7 y=1 \\
x+3 y=0
\end{array}
$$

has two matrices affiliated to it: the coefficient matrix

$$
\left[\begin{array}{ll}
2 & 7 \\
1 & 3
\end{array}\right]
$$

and

Matrices

In the previous example: a lot of excess notation. How to get rid of it? Matrix notation instead.

Example

The system

$$
\begin{array}{r}
2 x+7 y=1 \\
x+3 y=0
\end{array}
$$

has two matrices affiliated to it: the coefficient matrix

$$
\left[\begin{array}{ll}
2 & 7 \\
1 & 3
\end{array}\right]
$$

and the augmented matrix (including constants)

$$
\left[\begin{array}{lll}
2 & 7 & 1 \\
1 & 3 & 0
\end{array}\right]
$$

Solving systems with matrices

Three operations on systems/augmented matrices which don't change the solution set:

Solving systems with matrices

Three operations on systems/augmented matrices which don't change the solution set:
replace Add any multiple of one equation/row to another equation/row.

Solving systems with matrices

Three operations on systems/augmented matrices which don't change the solution set:
replace Add any multiple of one equation/row to another equation/row.
terchange Switch the places of two equations/rows.

Solving systems with matrices

Three operations on systems/augmented matrices which don't change the solution set:
replace Add any multiple of one equation/row to another equation/row.
terchange Switch the places of two equations/rows.
scaling Multiply every term/entry of an equation/row by a nonzero number $c \neq 0$.

Solving systems with matrices

Three operations on systems/augmented matrices which don't change the solution set:
replace Add any multiple of one equation/row to another equation/row.
terchange Switch the places of two equations/rows.
scaling Multiply every term/entry of an equation/row by a nonzero number $c \neq 0$.
Let's solve a larger system.

$$
\begin{array}{r}
x_{1}-2 x_{2}+x_{3}=0 \\
2 x_{2}-8 x_{3}=8 \\
-4 x_{1}+5 x_{2}+9 x_{3}=9
\end{array}
$$

$$
\begin{array}{r}
x_{1}-2 x_{2}+x_{3}=0 \\
2 x_{2}-8 x_{3}=8 \\
-4 x_{1}+5 x_{2}+9 x_{3}=9
\end{array}
$$

First convert to an augmented matrix.

$$
\begin{array}{r}
x_{1}-2 x_{2}+x_{3}=0 \\
2 x_{2}-8 x_{3}=8 \\
-4 x_{1}+5 x_{2}+9 x_{3}=9
\end{array}
$$

First convert to an augmented matrix.

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right]
$$

Add 4 times row 1 to row 3 . This eliminates the x_{1} variable from the third equation:

Add 4 times row 1 to row 3 . This eliminates the x_{1} variable from the third equation:

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right]
$$

Add 4 times row 1 to row 3 . This eliminates the x_{1} variable from the third equation:

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right]
$$

Multiply the second row by $\frac{1}{2}$. This makes the x_{2} variable appear with coefficient 1 in the second equation:

Multiply the second row by $\frac{1}{2}$. This makes the x_{2} variable appear with coefficient 1 in the second equation:

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right]
$$

Multiply the second row by $\frac{1}{2}$. This makes the x_{2} variable appear with coefficient 1 in the second equation:

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & -3 & 13 & -9
\end{array}\right]
$$

Add 3 times the second row to the third row. This eliminates the x_{2} variable from the third equation:

Add 3 times the second row to the third row. This eliminates the x_{2} variable from the third equation:

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & -3 & 13 & -9
\end{array}\right]
$$

Add 3 times the second row to the third row. This eliminates the x_{2} variable from the third equation:

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & -3 & 13 & -9
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

We could eliminate the x_{2} from the first equation, but it's simpler to eliminate x_{3} variable from the first and second equations.

We could eliminate the x_{2} from the first equation, but it's simpler to eliminate x_{3} variable from the first and second equations. Add 4 times the third row to the second row.

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

We could eliminate the x_{2} from the first equation, but it's simpler to eliminate x_{3} variable from the first and second equations. Add 4 times the third row to the second row.

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

We could eliminate the x_{2} from the first equation, but it's simpler to eliminate x_{3} variable from the first and second equations. Add 4 times the third row to the second row.

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Add -1 times the third row to the first row:

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

We could eliminate the x_{2} from the first equation, but it's simpler to eliminate x_{3} variable from the first and second equations. Add 4 times the third row to the second row.

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Add -1 times the third row to the first row:

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Now we have

$$
\left[\begin{array}{cccc}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Now we have

$$
\left[\begin{array}{cccc}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

We add 2 times the second row to the first row:

Now we have

$$
\left[\begin{array}{cccc}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

We add 2 times the second row to the first row:

$$
\left[\begin{array}{cccc}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Now we have

$$
\left[\begin{array}{cccc}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

We add 2 times the second row to the first row:

$$
\left[\begin{array}{cccc}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 29 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Now we have

$$
\left[\begin{array}{cccc}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

We add 2 times the second row to the first row:

$$
\left[\begin{array}{cccc}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 29 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

This new matrix represents the system

$$
\begin{aligned}
& x_{1}=29 \\
& x_{2}=16 \\
& x_{3}=3
\end{aligned}
$$

This is the solution to our original system (Check).

Consistent systems

Definition

A system of linear equations is consistent if it has a solution. Otherwise it is inconsistent.

Consistent systems

Definition

A system of linear equations is consistent if it has a solution. Otherwise it is inconsistent.

Example

The previous example is consistent.

Consistent systems

Definition

A system of linear equations is consistent if it has a solution. Otherwise it is inconsistent.

Example

The previous example is consistent. The system

$$
\begin{array}{r}
2 x+y=0 \\
-4 x-2 y=1
\end{array}
$$

is inconsistent. (Add 2 times the first row to the second row: you obtain $0=1$.)

Existence/uniqueness

Given a system of linear equations, we can ask two questions:

Existence/uniqueness

Given a system of linear equations, we can ask two questions:
(1) is it consistent, that is: does a solution exist?

Existence/uniqueness

Given a system of linear equations, we can ask two questions:
(1) is it consistent, that is: does a solution exist?
(2) if it possesses a solution, is the solution unique?

Existence/uniqueness

Given a system of linear equations, we can ask two questions:
(1) is it consistent, that is: does a solution exist?
(2) if it possesses a solution, is the solution unique?

Example

The system

$$
-2 x+y=0
$$

possesses infinitely many solutions

Existence/uniqueness

Given a system of linear equations, we can ask two questions:
(1) is it consistent, that is: does a solution exist?
(2) if it possesses a solution, is the solution unique?

Example

The system

$$
-2 x+y=0
$$

possesses infinitely many solutions (all the points on the line $y=2 x$).

Existence/uniqueness

Given a system of linear equations, we can ask two questions:
(1) is it consistent, that is: does a solution exist?
(2) if it possesses a solution, is the solution unique?

Example

The system

$$
-2 x+y=0
$$

possesses infinitely many solutions (all the points on the line $y=2 x$).

These are the two main questions we will begin with.

