Lecture 13: Vector spaces

Danny W. Crytser

April 18, 2014

(1) We will discuss subspaces of \mathbb{R}^{n} : subsets in which you can add and scale vectors.
(2) We will talk about bases
(3) Column space and null space of a matrix; finding bases for these spaces.
(4) Vector spaces
(6) Subspaces of vector spaces

Subspaces of \mathbb{R}^{n}

We have drawn a lot of attention to the fact that for a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the range need not equal the codomain $\left(\mathbb{R}^{m}\right)$.

Subspaces of \mathbb{R}^{n}

We have drawn a lot of attention to the fact that for a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the range need not equal the codomain $\left(\mathbb{R}^{m}\right)$. Now we are going to discuss more general collections of vectors which will include all the ranges.

Subspaces of \mathbb{R}^{n}

We have drawn a lot of attention to the fact that for a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the range need not equal the codomain $\left(\mathbb{R}^{m}\right)$. Now we are going to discuss more general collections of vectors which will include all the ranges.

Definition

A subspace of \mathbb{R}^{n} is a subset $H \subset \mathbb{R}^{n}$ satisfying three properties:

Subspaces of \mathbb{R}^{n}

We have drawn a lot of attention to the fact that for a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the range need not equal the codomain $\left(\mathbb{R}^{m}\right)$. Now we are going to discuss more general collections of vectors which will include all the ranges.

Definition

A subspace of \mathbb{R}^{n} is a subset $H \subset \mathbb{R}^{n}$ satisfying three properties:
(1) The zero vector $\mathbf{0} \in H$.

Subspaces of \mathbb{R}^{n}

We have drawn a lot of attention to the fact that for a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the range need not equal the codomain $\left(\mathbb{R}^{m}\right)$. Now we are going to discuss more general collections of vectors which will include all the ranges.

Definition

A subspace of \mathbb{R}^{n} is a subset $H \subset \mathbb{R}^{n}$ satisfying three properties:
(1) The zero vector $\mathbf{0} \in H$.
(2) If $\mathbf{u}, \mathbf{v} \in H$, then $\mathbf{u}+\mathbf{v} \in H$. (Closed under addition.)

Subspaces of \mathbb{R}^{n}

We have drawn a lot of attention to the fact that for a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the range need not equal the codomain $\left(\mathbb{R}^{m}\right)$. Now we are going to discuss more general collections of vectors which will include all the ranges.

Definition

A subspace of \mathbb{R}^{n} is a subset $H \subset \mathbb{R}^{n}$ satisfying three properties:
(1) The zero vector $\mathbf{0} \in H$.
(2) If $\mathbf{u}, \mathbf{v} \in H$, then $\mathbf{u}+\mathbf{v} \in H$. (Closed under addition.)
(3) For each $\mathbf{u} \in H$ and each scalar $c \in \mathbb{R}$, the vector $c \mathbf{u} \in H$ (Closed under scalar multiplication.)

Examples of subspaces

There are a lot of examples we have already seen.
(1) \mathbb{R}^{n} is always a subspace of itself

Examples of subspaces

There are a lot of examples we have already seen.
(1) \mathbb{R}^{n} is always a subspace of itself
(2) The zero subspace $H=\{\mathbf{0}\} \subset \mathbb{R}^{n}$ is always a subspace: $\mathbf{0}+\mathbf{0}=\mathbf{0}$ and $c \mathbf{0}=\mathbf{0}$ for any scalar c.

Examples of subspaces

There are a lot of examples we have already seen.
(1) \mathbb{R}^{n} is always a subspace of itself
(2) The zero subspace $H=\{\mathbf{0}\} \subset \mathbb{R}^{n}$ is always a subspace: $\mathbf{0}+\mathbf{0}=\mathbf{0}$ and $c \mathbf{0}=\mathbf{0}$ for any scalar c.
(3) $\ln \mathbb{R}^{2}$, any straight line through the origin is a subspace.

Examples of subspaces

There are a lot of examples we have already seen.
(1) \mathbb{R}^{n} is always a subspace of itself
(2) The zero subspace $H=\{\mathbf{0}\} \subset \mathbb{R}^{n}$ is always a subspace: $\mathbf{0}+\mathbf{0}=\mathbf{0}$ and $c \mathbf{0}=\mathbf{0}$ for any scalar c.
(3) $\ln \mathbb{R}^{2}$, any straight line through the origin is a subspace. That is: if k is a number (representing the slope of the line), then $H=\{(x, y): y=k x\} \subset \mathbb{R}^{2}$ is a subspace of \mathbb{R}^{2}.

Examples of subspaces

There are a lot of examples we have already seen.
(1) \mathbb{R}^{n} is always a subspace of itself
(2) The zero subspace $H=\{\mathbf{0}\} \subset \mathbb{R}^{n}$ is always a subspace: $\mathbf{0}+\mathbf{0}=\mathbf{0}$ and $c \mathbf{0}=\mathbf{0}$ for any scalar c.
(3) $\ln \mathbb{R}^{2}$, any straight line through the origin is a subspace. That is: if k is a number (representing the slope of the line), then $H=\{(x, y): y=k x\} \subset \mathbb{R}^{2}$ is a subspace of \mathbb{R}^{2}.

$$
(x, k x)+\left(x^{\prime}, k x^{\prime}\right)=\left(x+x^{\prime}, k x+k x^{\prime}\right)=\left(x+x^{\prime}, k\left(x+x^{\prime}\right)\right)
$$

Examples of subspaces

There are a lot of examples we have already seen.
(1) \mathbb{R}^{n} is always a subspace of itself
(2) The zero subspace $H=\{\mathbf{0}\} \subset \mathbb{R}^{n}$ is always a subspace: $\mathbf{0}+\mathbf{0}=\mathbf{0}$ and $c \mathbf{0}=\mathbf{0}$ for any scalar c.
(3) $\ln \mathbb{R}^{2}$, any straight line through the origin is a subspace. That is: if k is a number (representing the slope of the line), then $H=\{(x, y): y=k x\} \subset \mathbb{R}^{2}$ is a subspace of \mathbb{R}^{2}.
$(x, k x)+\left(x^{\prime}, k x^{\prime}\right)=\left(x+x^{\prime}, k x+k x^{\prime}\right)=\left(x+x^{\prime}, k\left(x+x^{\prime}\right)\right)$.
(y-axis is the subspace $\{(0, y) \mid y \in \mathbb{R}\}$.

Examples of subspaces

There are a lot of examples we have already seen.
(1) \mathbb{R}^{n} is always a subspace of itself
(2) The zero subspace $H=\{\mathbf{0}\} \subset \mathbb{R}^{n}$ is always a subspace: $\mathbf{0}+\mathbf{0}=\mathbf{0}$ and $c \mathbf{0}=\mathbf{0}$ for any scalar c.
(3) $\ln \mathbb{R}^{2}$, any straight line through the origin is a subspace. That is: if k is a number (representing the slope of the line), then $H=\{(x, y): y=k x\} \subset \mathbb{R}^{2}$ is a subspace of \mathbb{R}^{2}.
$(x, k x)+\left(x^{\prime}, k x^{\prime}\right)=\left(x+x^{\prime}, k x+k x^{\prime}\right)=\left(x+x^{\prime}, k\left(x+x^{\prime}\right)\right)$.
(y-axis is the subspace $\{(0, y) \mid y \in \mathbb{R}\}$.
(9) $\ln \mathbb{R}^{3}$, any plane passing through the origin is a subspace.

Non-examples

There are many non-examples of subspaces:
(1) if $\mathbf{v} \in \mathbb{R}^{n}$ is a nonzero vector, then $H=\{\mathbf{v}\}$ is not a subspace. (Why not?)

Non-examples

There are many non-examples of subspaces:
(1) if $\mathbf{v} \in \mathbb{R}^{n}$ is a nonzero vector, then $H=\{\mathbf{v}\}$ is not a subspace. (Why not?)
(2) in \mathbb{R}^{2} if H is a straight line not passing through the origin, then H is not a subspace of \mathbb{R}^{2} (Why not?)

Non-examples

There are many non-examples of subspaces:
(1) if $\mathbf{v} \in \mathbb{R}^{n}$ is a nonzero vector, then $H=\{\mathbf{v}\}$ is not a subspace. (Why not?)
(2) in \mathbb{R}^{2} if H is a straight line not passing through the origin, then H is not a subspace of \mathbb{R}^{2} (Why not?)
(3) in \mathbb{R}^{2}, if $H=\left\{(x, y) \in \mathbb{R}^{2}: x, y\right.$ are integers $\}$, then H contains $\mathbf{0}$ and is closed under addition.

Non-examples

There are many non-examples of subspaces:
(1) if $\mathbf{v} \in \mathbb{R}^{n}$ is a nonzero vector, then $H=\{\mathbf{v}\}$ is not a subspace. (Why not?)
(2) in \mathbb{R}^{2} if H is a straight line not passing through the origin, then H is not a subspace of \mathbb{R}^{2} (Why not?)
(3) in \mathbb{R}^{2}, if $H=\left\{(x, y) \in \mathbb{R}^{2}: x, y\right.$ are integers $\}$, then H contains $\mathbf{0}$ and is closed under addition. Is H a subspace?

Spans are subspaces

Example

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{n}$ be vectors.

Spans are subspaces

Example

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{n}$ be vectors. Then $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of \mathbb{R}^{n} :

Spans are subspaces

Example

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{n}$ be vectors. Then $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of \mathbb{R}^{n} : We can add linear combinations

$$
\left(\sum_{i=1}^{p} c_{i} \mathbf{v}_{i}\right)+\left(\sum_{i=1}^{p} d_{i} \mathbf{v}_{i}\right)=\sum_{i=1}^{p}\left(c_{i}+d_{i}\right) \mathbf{v}_{i}
$$

and obtain a new linear combination with weights $c_{i}+d_{i}$.

Spans are subspaces

Example

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{n}$ be vectors. Then $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of \mathbb{R}^{n} : We can add linear combinations

$$
\left(\sum_{i=1}^{p} c_{i} \mathbf{v}_{i}\right)+\left(\sum_{i=1}^{p} d_{i} \mathbf{v}_{i}\right)=\sum_{i=1}^{p}\left(c_{i}+d_{i}\right) \mathbf{v}_{i}
$$

and obtain a new linear combination with weights $c_{i}+d_{i}$ Similarly if k is a scalar

$$
k\left(\sum_{i=1}^{p} d_{i} \mathbf{v}_{i}\right)=\sum_{i=1}^{p}\left(k d_{i}\right) \mathbf{v}_{i}
$$

so we obtain a new linear combination with weights $k d_{j}$.

Spans are subspaces

Example

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{n}$ be vectors. Then $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of \mathbb{R}^{n} : We can add linear combinations

$$
\left(\sum_{i=1}^{p} c_{i} \mathbf{v}_{i}\right)+\left(\sum_{i=1}^{p} d_{i} \mathbf{v}_{i}\right)=\sum_{i=1}^{p}\left(c_{i}+d_{i}\right) \mathbf{v}_{i}
$$

and obtain a new linear combination with weights $c_{i}+d_{i}$. Similarly if k is a scalar

$$
k\left(\sum_{i=1}^{p} d_{i} \mathbf{v}_{i}\right)=\sum_{i=1}^{p}\left(k d_{i}\right) \mathbf{v}_{i}
$$

so we obtain a new linear combination with weights $k d_{j}$. This shows that the span of $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of \mathbb{R}^{n}.
Sometimes we'll call $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ the subspace spanned by $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

Column space

If you have an $m \times n$ matrix A, then the columns are all vectors in

Column space

If you have an $m \times n$ matrix A, then the columns are all vectors in \mathbb{R}^{m}. Thus you can consider their span, which gets a special name.

Column space

If you have an $m \times n$ matrix A, then the columns are all vectors in \mathbb{R}^{m}. Thus you can consider their span, which gets a special name.

Definition

Let A be an $m \times n$ matrix with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$. Then the column space of A is the set $\operatorname{Col} A:=\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$

Column space

If you have an $m \times n$ matrix A, then the columns are all vectors in \mathbb{R}^{m}. Thus you can consider their span, which gets a special name.

Definition

Let A be an $m \times n$ matrix with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$. Then the column space of A is the set $\operatorname{Col} A:=\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$

Example

$$
\text { Let } A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 3
\end{array}\right]
$$

Column space

If you have an $m \times n$ matrix A, then the columns are all vectors in \mathbb{R}^{m}. Thus you can consider their span, which gets a special name.

Definition

Let A be an $m \times n$ matrix with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$. Then the column space of A is the set $\operatorname{Col} A:=\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$

Example

Let $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 3\end{array}\right]$ Then $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ belongs to $\operatorname{Col} A$,

Column space

If you have an $m \times n$ matrix A, then the columns are all vectors in \mathbb{R}^{m}. Thus you can consider their span, which gets a special name.

Definition

Let A be an $m \times n$ matrix with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$. Then the column space of A is the set $\operatorname{Col} A:=\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$

Example

Let $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 3\end{array}\right]$ Then $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ belongs to Col A, because
$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Column space

If you have an $m \times n$ matrix A, then the columns are all vectors in \mathbb{R}^{m}. Thus you can consider their span, which gets a special name.

Definition

Let A be an $m \times n$ matrix with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$. Then the column space of A is the set $\operatorname{Col} A:=\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$

Example

$$
\begin{gathered}
\text { Let } A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 3
\end{array}\right] \text { Then }\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { belongs to } \operatorname{Col} A \text {, because } \\
{\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+1\left[\begin{array}{l}
1 \\
2
\end{array}\right]+0\left[\begin{array}{l}
0 \\
3
\end{array}\right]}
\end{gathered}
$$

Column space

If you have an $m \times n$ matrix A, then the columns are all vectors in \mathbb{R}^{m}. Thus you can consider their span, which gets a special name.

Definition

Let A be an $m \times n$ matrix with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$. Then the column space of A is the set $\operatorname{Col} A:=\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$

Example

Let $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 3\end{array}\right]$ Then $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ belongs to $\operatorname{Col} A$, because

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+1\left[\begin{array}{l}
1 \\
2
\end{array}\right]+0\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

The vector is a linear combination of the columns of A, so it belongs to the column space of A.

What's in the column space?

Determining which vectors \mathbf{b} are in the column space $\operatorname{Col} A$ is the same as determining which systems $A \mathbf{x}=\mathbf{b}$ are consistent.

What's in the column space?

Determining which vectors \mathbf{b} are in the column space $\operatorname{Col} A$ is the same as determining which systems $A \mathbf{x}=\mathbf{b}$ are consistent. Thus we can say whether or not a vector is in the column space of A by reducing the augmented matrix to echelon form.

What's in the column space?

Determining which vectors \mathbf{b} are in the column space $\operatorname{Col} A$ is the same as determining which systems $A \mathbf{x}=\mathbf{b}$ are consistent. Thus we can say whether or not a vector is in the column space of A by reducing the augmented matrix to echelon form.

Example
Does $\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]$ belong to the column space of the matrix $\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$?

What's in the column space?

Determining which vectors \mathbf{b} are in the column space $\operatorname{Col} A$ is the same as determining which systems $A \mathbf{x}=\mathbf{b}$ are consistent. Thus we can say whether or not a vector is in the column space of A by reducing the augmented matrix to echelon form.

Example
Does $\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]$ belong to the column space of the matrix $\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$? We
form the augmented matrix and reduce
$\left[\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right]$

What's in the column space?

Determining which vectors \mathbf{b} are in the column space $\operatorname{Col} A$ is the same as determining which systems $A \mathbf{x}=\mathbf{b}$ are consistent. Thus we can say whether or not a vector is in the column space of A by reducing the augmented matrix to echelon form.

Example
Does $\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]$ belong to the column space of the matrix $\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$? We
form the augmented matrix and reduce

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & 0 & 0
\end{array}\right]
$$

What's in the column space?

Determining which vectors \mathbf{b} are in the column space $\operatorname{Col} A$ is the same as determining which systems $A \mathbf{x}=\mathbf{b}$ are consistent. Thus we can say whether or not a vector is in the column space of A by reducing the augmented matrix to echelon form.

Example

Does $\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]$ belong to the column space of the matrix $\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$? We
form the augmented matrix and reduce

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & 0 & 0
\end{array}\right]
$$

System is consistent, so $\mathbf{b} \in \operatorname{Col} A$.

null |nal |

adjective
1 [predic.] having no legal or binding force; invalid: the establishment of a new interim government was declared null and void.
2 having or associated with the value zero.

- Mathematics (of a set or matrix) having no elements, or only zeros as elements.
- lacking distinctive qualities; having no positive substance or content: his curiously null life.

Null space

null |nal |

adjective
1 [predic.] having no legal or binding force; invalid: the establishment of a new interim government was declared null and void.
2 having or associated with the value zero.

- Mathematics (of a set or matrix) having no elements, or only zeros as elements.
- lacking distinctive qualities; having no positive substance or content: his curiously null life.

Definition

Let A be a $m \times n$ matrix.

Null space

null |nal |

adjective
1 [predic.] having no legal or binding force; invalid: the establishment of a new interim government was declared null and void.
2 having or associated with the value zero.

- Mathematics (of a set or matrix) having no elements, or only zeros as elements.
- lacking distinctive qualities; having no positive substance or content: his curiously null life.

Definition

Let A be a $m \times n$ matrix. Then the null space of A is the set $\operatorname{Nul} A \subset \mathbb{R}^{n}$ of all vectors $\mathbf{x} \in \mathbb{R}^{n}$ such that $A \mathbf{x}=\mathbf{0}$.

Null space

null | nal |

adjective
1 [predic.] having no legal or binding force; invalid: the establishment of a new interim government was declared null and void.
2 having or associated with the value zero.

- Mathematics (of a set or matrix) having no elements, or only zeros as elements.
- lacking distinctive qualities; having no positive substance or content: his curiously null life.

Definition

Let A be a $m \times n$ matrix. Then the null space of A is the set $\operatorname{Nul} A \subset \mathbb{R}^{n}$ of all vectors $\mathbf{x} \in \mathbb{R}^{n}$ such that $A \mathbf{x}=\mathbf{0}$. That is, $\operatorname{Nul} A$ is just the solution set of the homogeneous system $A \mathbf{x}=\mathbf{0}$.

Null space

null | nal |

adjective
1 [predic.] having no legal or binding force; invalid: the establishment of a new interim government was declared null and void.
2 having or associated with the value zero.

- Mathematics (of a set or matrix) having no elements, or only zeros as elements.
- lacking distinctive qualities; having no positive substance or content: his curiously null life.

Definition

Let A be a $m \times n$ matrix. Then the null space of A is the set $\operatorname{Nul} A \subset \mathbb{R}^{n}$ of all vectors $\mathbf{x} \in \mathbb{R}^{n}$ such that $A \mathbf{x}=\mathbf{0}$. That is, $\operatorname{Nul} A$ is just the solution set of the homogeneous system $A \mathbf{x}=\mathbf{0}$.

It's easy to test if \mathbf{u} belongs to $\operatorname{Nul} A$:

Null space

null | nal |
adjective
1 [predic.] having no legal or binding force; invalid: the establishment of a newe interim government was declared null and void.
2 having or associated with the value zero.

- Mathematics (of a set or matrix) having no elements, or only zeros as elements.
- lacking distinctive qualities; having no positive substance or content: his curiously null life.

Definition

Let A be a $m \times n$ matrix. Then the null space of A is the set $\operatorname{Nul} A \subset \mathbb{R}^{n}$ of all vectors $\mathbf{x} \in \mathbb{R}^{n}$ such that $A \mathbf{x}=\mathbf{0}$. That is, $\operatorname{Nul} A$ is just the solution set of the homogeneous system $A \mathbf{x}=\mathbf{0}$.

It's easy to test if \mathbf{u} belongs to $\operatorname{Nul} A$: just multiply it by A and see if you get $\mathbf{0}$.

Null spaces are subspaces

The following theorem should not shock you.

Null spaces are subspaces

The following theorem should not shock you.

Theorem

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{n}.

Null spaces are subspaces

The following theorem should not shock you.

Theorem

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{n}.

Null spaces are subspaces

The following theorem should not shock you.

Theorem

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{n}.

Proof.

(1) $\mathbf{0} \in \operatorname{NuI} A$

Null spaces are subspaces

The following theorem should not shock you.

Theorem

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{n}.

Proof.

(1) $0 \in \mathrm{Nul} A$
(2) if $A \mathbf{u}=\mathbf{0}=A \mathbf{v}$, then $A(\mathbf{u}+\mathbf{v})=\mathbf{0}+\mathbf{0}=\mathbf{0}$

Null spaces are subspaces

The following theorem should not shock you.

Theorem

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{n}.

Proof.

(1) $0 \in \mathrm{Nul} A$
(2) if $A \mathbf{u}=\mathbf{0}=A \mathbf{v}$, then $A(\mathbf{u}+\mathbf{v})=\mathbf{0}+\mathbf{0}=\mathbf{0}$ So $\operatorname{Nul} A$ is closed under addition.

Null spaces are subspaces

The following theorem should not shock you.

Theorem

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{n}.

Proof.

(1) $0 \in \operatorname{Nul} A$
(2) if $A \mathbf{u}=\mathbf{0}=A \mathbf{v}$, then $A(\mathbf{u}+\mathbf{v})=\mathbf{0}+\mathbf{0}=\mathbf{0}$ So $\operatorname{Nul} A$ is closed under addition.
(3) if $A \mathbf{u}=\mathbf{0}$ and c is a scalar, then $A(c \mathbf{u})=c(A \mathbf{u})=c \mathbf{0}=\mathbf{0}$.

Null spaces are subspaces

The following theorem should not shock you.

Theorem

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{n}.

Proof.

(1) $0 \in \operatorname{Nul} A$
(2) if $A \mathbf{u}=\mathbf{0}=A \mathbf{v}$, then $A(\mathbf{u}+\mathbf{v})=\mathbf{0}+\mathbf{0}=\mathbf{0}$ So $\operatorname{Nul} A$ is closed under addition.
(3) if $A \mathbf{u}=\mathbf{0}$ and c is a scalar, then $A(c \mathbf{u})=c(A \mathbf{u})=c \mathbf{0}=\mathbf{0}$. So $\operatorname{Nul} A$ is closed under scalar multiplication.

What do you need to span a set?

We've seen that a set $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ of vectors spans a subspace.

What do you need to span a set?

We've seen that a set $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ of vectors spans a subspace. Now we consider how many vectors we actually need to span a subspace.

What do you need to span a set?

We've seen that a set $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ of vectors spans a subspace. Now we consider how many vectors we actually need to span a subspace.

Example

Let $\mathbf{v}_{1}=(1,2)$ and $\mathbf{v}_{2}=(2,4)$ in \mathbb{R}^{2}.

What do you need to span a set?

We've seen that a set $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ of vectors spans a subspace. Now we consider how many vectors we actually need to span a subspace.

Example

Let $\mathbf{v}_{1}=(1,2)$ and $\mathbf{v}_{2}=(2,4)$ in \mathbb{R}^{2}. Any linear combination of these is just a scalar multiple of \mathbf{v}_{1}. Thus

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}\right\} .
$$

What do you need to span a set?

We've seen that a set $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ of vectors spans a subspace. Now we consider how many vectors we actually need to span a subspace.

Example

Let $\mathbf{v}_{1}=(1,2)$ and $\mathbf{v}_{2}=(2,4)$ in \mathbb{R}^{2}. Any linear combination of these is just a scalar multiple of \mathbf{v}_{1}. Thus

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}\right\}
$$

If $\mathbf{u}_{1}=(1,1)$ and $\mathbf{u}_{2}=(1,2)$, then

$$
\operatorname{span}\left\{\mathbf{u}_{1}\right\} \subsetneq \operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}
$$

What do you need to span a set?

We've seen that a set $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ of vectors spans a subspace. Now we consider how many vectors we actually need to span a subspace.

Example

Let $\mathbf{v}_{1}=(1,2)$ and $\mathbf{v}_{2}=(2,4)$ in \mathbb{R}^{2}. Any linear combination of these is just a scalar multiple of \mathbf{v}_{1}. Thus

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}\right\} .
$$

If $\mathbf{u}_{1}=(1,1)$ and $\mathbf{u}_{2}=(1,2)$, then

$$
\operatorname{span}\left\{\mathbf{u}_{1}\right\} \subsetneq \operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}
$$

We are going to be interested in throwing out as many vectors as we can without changing the span.

Definition

Let $H \subset \mathbb{R}^{n}$ be a subspace of \mathbb{R}^{n}. Then a basis for H is a linearly independent set in H whose span is all of H.

Bases

Definition

Let $H \subset \mathbb{R}^{n}$ be a subspace of \mathbb{R}^{n}. Then a basis for H is a linearly independent set in H whose span is all of H. (Plural is bases, pron. bay-seize).

Definition
Let $H \subset \mathbb{R}^{n}$ be a subspace of \mathbb{R}^{n}. Then a basis for H is a linearly independent set in H whose span is all of H. (Plural is bases, pron. bay-seize).

Remark

It is not enough for a set to be linearly independent in order for it to be a basis, nor is it enough for a set to be spanning. It has to be both linearly independent and spanning.

Examples of bases

The most important example of a basis is one we've worked with a lot.

Examples of bases

The most important example of a basis is one we've worked with a lot.

Definition

The columns of any invertible $n \times n$ matrix form a basis for \mathbb{R}^{n} : they are linearly independent and spanning by the Invertible Matrix Theorem.

Examples of bases

The most important example of a basis is one we've worked with a lot.

Definition

The columns of any invertible $n \times n$ matrix form a basis for \mathbb{R}^{n} : they are linearly independent and spanning by the Invertible Matrix Theorem. In particular the columns of I_{n}, the $n \times n$ identity matrix, form a basis for \mathbb{R}^{n} called the standard basis for \mathbb{R}^{n}.

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \ldots, \quad \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

Example: not a basis

Example

Let $H=\{(x, x, y) \mid x, y \in \mathbb{R}\} \subset \mathbb{R}^{3}$, so that H is a subspace of \mathbb{R}^{3}

Example: not a basis

Example

Let $H=\{(x, x, y) \mid x, y \in \mathbb{R}\} \subset \mathbb{R}^{3}$, so that H is a subspace of \mathbb{R}^{3}
(1) $S_{1}=\{(1,1,0),(2,2,0),(0,0,1)\}$ spans H because any

$$
\begin{aligned}
& (x, x, y) \in H \text { is } \\
& (x, x, y)=x(1,1,0)+y(0,0,1) \in \operatorname{span}\{(1,1),(2,2)\}
\end{aligned}
$$

Example: not a basis

Example

Let $H=\{(x, x, y) \mid x, y \in \mathbb{R}\} \subset \mathbb{R}^{3}$, so that H is a subspace of \mathbb{R}^{3}
(1) $S_{1}=\{(1,1,0),(2,2,0),(0,0,1)\}$ spans H because any $(x, x, y) \in H$ is
$(x, x, y)=x(1,1,0)+y(0,0,1) \in \operatorname{span}\{(1,1),(2,2)\} . S_{1}$ is not a basis for H. Why?

Example: not a basis

Example

Let $H=\{(x, x, y) \mid x, y \in \mathbb{R}\} \subset \mathbb{R}^{3}$, so that H is a subspace of \mathbb{R}^{3}
(1) $S_{1}=\{(1,1,0),(2,2,0),(0,0,1)\}$ spans H because any $(x, x, y) \in H$ is
$(x, x, y)=x(1,1,0)+y(0,0,1) \in \operatorname{span}\{(1,1),(2,2)\} . S_{1}$ is not a basis for H. Why?
(2) $S_{2}=\{(1,1,0)\}$ is a linearly independent set in H, because it only has one element and that element is nonzero.

Example: not a basis

Example

Let $H=\{(x, x, y) \mid x, y \in \mathbb{R}\} \subset \mathbb{R}^{3}$, so that H is a subspace of \mathbb{R}^{3}
(1) $S_{1}=\{(1,1,0),(2,2,0),(0,0,1)\}$ spans H because any $(x, x, y) \in H$ is
$(x, x, y)=x(1,1,0)+y(0,0,1) \in \operatorname{span}\{(1,1),(2,2)\} . S_{1}$ is not a basis for H. Why?
(2) $S_{2}=\{(1,1,0)\}$ is a linearly independent set in H, because it only has one element and that element is nonzero. However, S_{2} is not a basis for H. Why?

Finding bases for Nul A

Finding a basis for $\operatorname{Nul} A$ amounts to writing down a parametric description of the solutions to $A \mathbf{x}=\mathbf{0}$.

Finding bases for Nul A

Finding a basis for $\operatorname{Nul} A$ amounts to writing down a parametric description of the solutions to $A \mathbf{x}=\mathbf{0}$.

Example

Let's find a basis for Nul A, where $A=\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 2 & 3 & 1 & 2\end{array}\right]$.

Finding bases for Nul A

Finding a basis for $\operatorname{Nul} A$ amounts to writing down a parametric description of the solutions to $A \mathbf{x}=\mathbf{0}$.

Example

Let's find a basis for $\operatorname{Nul} A$, where $A=\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 2 & 3 & 1 & 2\end{array}\right]$. These will be solutions to $A \mathbf{x}=\mathbf{0}$, so we have $\operatorname{Nul} A \subset \mathbb{R}^{4}$.

Finding bases for Nul A

Finding a basis for $\operatorname{Nul} A$ amounts to writing down a parametric description of the solutions to $A \mathbf{x}=\mathbf{0}$.

Example

Let's find a basis for $\operatorname{Nul} A$, where $A=\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 2 & 3 & 1 & 2\end{array}\right]$. These will be solutions to $A \mathbf{x}=\mathbf{0}$, so we have $\operatorname{Nul} A \subset \mathbb{R}^{4}$. Augment and row reduce:

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 3 & 1 & 2 & 0 \\
3 & 2 & 1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0
\end{array}\right]
$$

Finding bases for $\operatorname{Nul} A$

Finding a basis for $\operatorname{Nul} A$ amounts to writing down a parametric description of the solutions to $A \mathbf{x}=\mathbf{0}$.

Example

Let's find a basis for $\operatorname{Nul} A$, where $A=\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 2 & 3 & 1 & 2\end{array}\right]$. These will be solutions to $A \mathbf{x}=\mathbf{0}$, so we have $\operatorname{Nul} A \subset \mathbb{R}^{4}$. Augment and row reduce:

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & 0 & 0 \\
2 & 3 & 1 & 2 & 0 \\
3 & 2 & 1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0
\end{array}\right]
$$

The solution is $x_{1}=0, x_{2}=-x_{4}, x_{3}=x_{4}, x_{4}$ free.

Finding bases for $\operatorname{Nul} A$

Finding a basis for $\operatorname{Nul} A$ amounts to writing down a parametric description of the solutions to $A \mathbf{x}=\mathbf{0}$.

Example

Let's find a basis for $\mathrm{Nul} A$, where $A=\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 2 & 3 & 1 & 2\end{array}\right]$. These will be solutions to $A \mathbf{x}=\mathbf{0}$, so we have $\operatorname{Nul} A \subset \mathbb{R}^{4}$. Augment and row reduce:

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & 0 & 0 \\
2 & 3 & 1 & 2 & 0 \\
3 & 2 & 1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0
\end{array}\right]
$$

The solution is $x_{1}=0, x_{2}=-x_{4}, x_{3}=x_{4}, x_{4}$ free. Thus

$$
\operatorname{Nul} A=\operatorname{span}\{(0,-1,1,1)\}
$$

and $\{(0,-1,1,1)\}$ is a basis for the null space of A.

Finding bases for $\operatorname{Col} A$

Computing a basis for $\operatorname{Col} A$ is straightforward:

Theorem

Let A be an $m \times n$ matrix. Then the set of all columns of A which contain pivots form a basis for $\operatorname{Col} A$.

Finding bases for $\mathrm{Col} A$

Computing a basis for $\operatorname{Col} A$ is straightforward:

Theorem

Let A be an $m \times n$ matrix. Then the set of all columns of A which contain pivots form a basis for $\operatorname{Col} A$.

This requires delicacy to apply: you have to reduce to echelon form to see where the pivots are, but you do not use the columns of the echelon form.

Finding bases for $\operatorname{Col} A$

Computing a basis for $\operatorname{Col} A$ is straightforward:

Theorem

Let A be an $m \times n$ matrix. Then the set of all columns of A which contain pivots form a basis for $\operatorname{Col} A$.

This requires delicacy to apply: you have to reduce to echelon form to see where the pivots are, but you do not use the columns of the echelon form. You use the columns of the matrix A, not the columns of its echelon form.

Example: basis for $\operatorname{Col} A$

Example
 Let $A=\left[\begin{array}{ccc}1 & 1 & 2 \\ -1 & -1 & 3\end{array}\right]$.

Example: basis for $\operatorname{Col} A$

Example
 Let $A=\left[\begin{array}{ccc}1 & 1 & 2 \\ -1 & -1 & 3\end{array}\right]$. We compute a basis for $\operatorname{Col} A$

What are we doing?

So far we've defined subspaces of \mathbb{R}^{n} as things where you can add and scale vectors.

What are we doing?

So far we've defined subspaces of \mathbb{R}^{n} as things where you can add and scale vectors. There are in fact many examples of sets with naturally defined addition and scalar multiplication.

Vector spaces: definition

Definition

A vector space is a nonempty set V of objects, called vectors, which we can add and multiply by scalars and all the following axioms hold whenever $\mathbf{u}, \mathbf{v} \in V, c, d \in \mathbb{R}$:
(1) $\mathbf{u}+\mathbf{v} \in V$
(2) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(3) $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
(9) there is a zero vector $\mathbf{0} \in V$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$
(5) there is $-\mathbf{u} \in V$ with $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
(0) the scalar multiple $c \mathbf{u} \in V$
(1) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(8) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
(9) $c(d \mathbf{u})=(c d) \mathbf{u}$
(10) $\mathbf{1 u}=\mathbf{u}$

What does all that mean?

We know that when $V=\mathbb{R}^{n}$ all these properties of addition and scalar multiplication hold.

What does all that mean?

We know that when $V=\mathbb{R}^{n}$ all these properties of addition and scalar multiplication hold. The idea is that any set with addition and scalar multiplication which plays "this nice" will enjoy all the nice properties of \mathbb{R}^{n}.

Example of vector spaces: differentiable functions

Example

Let

$$
V=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable at every point } x \in \mathbb{R}\}
$$

Example of vector spaces: differentiable functions

Example

Let

$$
V=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable at every point } x \in \mathbb{R}\}
$$

We can define pointwise addition and scalar multiplication on this set by

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \\
& \quad(c f)(x) c(f(x))
\end{aligned}
$$

for $f, g \in V$ and $c \in \mathbb{R}$. It is a fact from calculus that if f and g are differentiable then $f+g$ is differntiable and $c f$ is differentiable. Thus $f+g \in V$ and $c f \in V$.

Example of vector spaces: differentiable functions

Example

Let

$$
V=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable at every point } x \in \mathbb{R}\}
$$

We can define pointwise addition and scalar multiplication on this set by

$$
(f+g)(x)=f(x)+g(x)
$$

for $f, g \in V$ and $c \in \mathbb{R}$. It is a fact from calculus that if f and g are differentiable then $f+g$ is differntiable and $c f$ is differentiable. Thus $f+g \in V$ and $c f \in V$.

Example of vector spaces: differentiable functions

Example

Let

$$
V=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable at every point } x \in \mathbb{R}\}
$$

We can define pointwise addition and scalar multiplication on this set by

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \\
& \quad(c f)(x) c(f(x))
\end{aligned}
$$

for $f, g \in V$ and $c \in \mathbb{R}$.

Example of vector spaces: differentiable functions

Example

Let

$$
V=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable at every point } x \in \mathbb{R}\}
$$

We can define pointwise addition and scalar multiplication on this set by

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \\
& \quad(c f)(x) c(f(x))
\end{aligned}
$$

for $f, g \in V$ and $c \in \mathbb{R}$. It is a fact from calculus that if f and g are differentiable then $f+g$ is differntiable and $c f$ is differentiable. Thus $f+g \in V$ and $c f \in V$.

Examples of vector space: matrices

Example

Let m and n be integers and define

$$
M=M_{m, n}=\left\{A=\left[a_{i j}\right]: A \text { is a } m \times n \text { matrix }\right\} .
$$

We can define addition and scalar multiplication entry-wise the way we discussed in section 2.1.

Examples of vector space: matrices

Example

Let m and n be integers and define

$$
M=M_{m, n}=\left\{A=\left[a_{i j}\right]: A \text { is a } m \times n \text { matrix }\right\} .
$$

We can define addition and scalar multiplication entry-wise the way we discussed in section 2.1. All the nice properties of matrix algebra from 2.1 guarantee that M is a vector space.

Examples of vector space: matrices

Example

Let m and n be integers and define

$$
M=M_{m, n}=\left\{A=\left[a_{i j}\right]: A \text { is a } m \times n \text { matrix }\right\} .
$$

We can define addition and scalar multiplication entry-wise the way we discussed in section 2.1. All the nice properties of matrix algebra from 2.1 guarantee that M is a vector space.

Remark

Noteice that you get a different vector space for every choice of (m, n) : you can only add vectors of the same size.

Examples of vector space: matrices

Example

Let m and n be integers and define

$$
M=M_{m, n}=\left\{A=\left[a_{i j}\right]: A \text { is a } m \times n \text { matrix }\right\} .
$$

We can define addition and scalar multiplication entry-wise the way we discussed in section 2.1. All the nice properties of matrix algebra from 2.1 guarantee that M is a vector space.

Remark

Noteice that you get a different vector space for every choice of (m, n) : you can only add vectors of the same size. Thus there is the vector space of 2×2 matrices, the vector space of 3×2 matrices, etc.

Examples of vector spaces: polynomials

Example

Let $n \geq 1$ be an integer and define

$$
\mathbb{P}_{n}=\left\{a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}: a_{0}, \ldots, a_{n} \in \mathbb{R}\right\} .
$$

Examples of vector spaces: polynomials

Example

Let $n \geq 1$ be an integer and define

$$
\mathbb{P}_{n}=\left\{a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}: a_{0}, \ldots, a_{n} \in \mathbb{R}\right\} .
$$

Thus \ltimes is the set of all polynomials with degree $\leq n$.

Examples of vector spaces: polynomials

Example

Let $n \geq 1$ be an integer and define

$$
\mathbb{P}_{n}=\left\{a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}: a_{0}, \ldots, a_{n} \in \mathbb{R}\right\} .
$$

Thus \ltimes is the set of all polynomials with degree $\leq n$. You can add polynomials

$$
\left(a_{0}+a_{1} t++\ldots+a_{n} t^{n}\right)+\left(b_{0}+b_{1} t+\ldots+b_{n} t^{n}\right)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) t+\ldots+
$$

You can multiply polynomials by scalars

$$
c\left(a_{0}+a_{1} t++\ldots+a_{n} t^{n}\right)=\left(c a_{0}\right)+\left(c a_{1}\right) t+\ldots+\left(c a_{n}\right) t^{n} .
$$

Examples of vector spaces: polynomials

Example

Let $n \geq 1$ be an integer and define

$$
\mathbb{P}_{n}=\left\{a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}: a_{0}, \ldots, a_{n} \in \mathbb{R}\right\} .
$$

Thus \ltimes is the set of all polynomials with degree $\leq n$. You can add polynomials

$$
\left(a_{0}+a_{1} t++\ldots+a_{n} t^{n}\right)+\left(b_{0}+b_{1} t+\ldots+b_{n} t^{n}\right)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) t+\ldots+
$$

You can multiply polynomials by scalars

$$
c\left(a_{0}+a_{1} t++\ldots+a_{n} t^{n}\right)=\left(c a_{0}\right)+\left(c a_{1}\right) t+\ldots+\left(c a_{n}\right) t^{n} .
$$

Checking that all the vector space axioms hold is kinda boring but within your powers (hah, ugh).

Spans in vector spaces

Definition

Let V be a vector space and let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ be some subset of vectors in V.

Spans in vector spaces

Definition

Let V be a vector space and let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ be some subset of vectors in V. Then the span of S, denote span S is the subset of V consisting of all linear combinations

$$
\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}
$$

of the vectors in S.

Spans in vector spaces

Definition

Let V be a vector space and let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ be some subset of vectors in V. Then the span of S, denote span S is the subset of V consisting of all linear combinations

$$
\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}
$$

of the vectors in S. (You can modify this notation to allow for infinite sets: just require that all but finitely many of the weights c_{i} are 0 .)

Subspaces

Definition

Let V be a vector space. A subspace of V is a nonempty subset $H \subset V$ such that
(1) the zero vector of V belongs to H

Subspaces

Definition

Let V be a vector space. A subspace of V is a nonempty subset $H \subset V$ such that
(1) the zero vector of V belongs to H
(2) the sum of any two vectors in H again belongs to H

Subspaces

Definition

Let V be a vector space. A subspace of V is a nonempty subset $H \subset V$ such that
(1) the zero vector of V belongs to H
(2) the sum of any two vectors in H again belongs to H
(3) the scalar multiple of a vector in H by

Example: $f^{\prime}(0)=0$

Let V denote the vector space of all differentiable function with pointwise addition and scalar multiplication.

Example: $f^{\prime}(0)=0$

Let V denote the vector space of all differentiable function with pointwise addition and scalar multiplication. Define

$$
H=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable, } f^{\prime}(0)=0\right\}
$$

Example: $f^{\prime}(0)=0$

Let V denote the vector space of all differentiable function with pointwise addition and scalar multiplication. Define

$$
H=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable, } f^{\prime}(0)=0\right\}
$$

Then H is a subspace of V.

Example: $f^{\prime}(0)=0$

Let V denote the vector space of all differentiable function with pointwise addition and scalar multiplication. Define

$$
H=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable, } f^{\prime}(0)=0\right\}
$$

Then H is a subspace of V.
(1) the zero vector in V is the constant zero function. This is differentiable with derivative 0 at $x=0$. Thus $\mathbf{0} \in H$

Example: $f^{\prime}(0)=0$

Let V denote the vector space of all differentiable function with pointwise addition and scalar multiplication. Define

$$
H=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable, } f^{\prime}(0)=0\right\}
$$

Then H is a subspace of V.
(1) the zero vector in V is the constant zero function. This is differentiable with derivative 0 at $x=0$. Thus $\mathbf{0} \in H$
(2) if f and g are differentiable functions on \mathbb{R} with $f^{\prime}(0)=0=g^{\prime}(0)$ (i.e. if $f, g \in H$), then $(f+g)^{\prime}(0)=0$ by the sum rule for derivatives. Thus $f, g \in H$ implies $f+g \in H$.

Example: $f^{\prime}(0)=0$

Let V denote the vector space of all differentiable function with pointwise addition and scalar multiplication. Define

$$
H=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable, } f^{\prime}(0)=0\right\}
$$

Then H is a subspace of V.
(1) the zero vector in V is the constant zero function. This is differentiable with derivative 0 at $x=0$. Thus $\mathbf{0} \in H$
(2) if f and g are differentiable functions on \mathbb{R} with $f^{\prime}(0)=0=g^{\prime}(0)$ (i.e. if $f, g \in H$), then $(f+g)^{\prime}(0)=0$ by the sum rule for derivatives. Thus $f, g \in H$ implies $f+g \in H$. (H is closed under addition).

Example: $f^{\prime}(0)=0$

Let V denote the vector space of all differentiable function with pointwise addition and scalar multiplication. Define

$$
H=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable, } f^{\prime}(0)=0\right\}
$$

Then H is a subspace of V.
(1) the zero vector in V is the constant zero function. This is differentiable with derivative 0 at $x=0$. Thus $\mathbf{0} \in H$
(2) if f and g are differentiable functions on \mathbb{R} with $f^{\prime}(0)=0=g^{\prime}(0)$ (i.e. if $f, g \in H$), then $(f+g)^{\prime}(0)=0$ by the sum rule for derivatives. Thus $f, g \in H$ implies $f+g \in H$. (H is closed under addition).
(3) if $f \in H$ is a function with zero derivative at 0 , and c is some scalar, then $(c f)^{\prime}(0)=c\left(f^{\prime}(0)\right)=0$ by the scalar multiple rule for derivatives (or the product rule). Thus $f \in H$ and $c \in \mathbb{R}$ implies $c f \in H$.

Example: $f^{\prime}(0)=0$

Let V denote the vector space of all differentiable function with pointwise addition and scalar multiplication. Define

$$
H=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable, } f^{\prime}(0)=0\right\}
$$

Then H is a subspace of V.
(1) the zero vector in V is the constant zero function. This is differentiable with derivative 0 at $x=0$. Thus $\mathbf{0} \in H$
(2) if f and g are differentiable functions on \mathbb{R} with $f^{\prime}(0)=0=g^{\prime}(0)$ (i.e. if $f, g \in H$), then $(f+g)^{\prime}(0)=0$ by the sum rule for derivatives. Thus $f, g \in H$ implies $f+g \in H$. (H is closed under addition).
(3) if $f \in H$ is a function with zero derivative at 0 , and c is some scalar, then $(c f)^{\prime}(0)=c\left(f^{\prime}(0)\right)=0$ by the scalar multiple rule for derivatives (or the product rule). Thus $f \in H$ and $c \in \mathbb{R}$ implies $c f \in H$. (H is closed under scalar multiplication.)

Example: $f^{\prime}(0)=0$

Let V denote the vector space of all differentiable function with pointwise addition and scalar multiplication. Define

$$
H=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable, } f^{\prime}(0)=0\right\}
$$

Then H is a subspace of V.
(1) the zero vector in V is the constant zero function. This is differentiable with derivative 0 at $x=0$. Thus $\mathbf{0} \in H$
(2) if f and g are differentiable functions on \mathbb{R} with $f^{\prime}(0)=0=g^{\prime}(0)$ (i.e. if $f, g \in H$), then $(f+g)^{\prime}(0)=0$ by the sum rule for derivatives. Thus $f, g \in H$ implies $f+g \in H$. (H is closed under addition).
(3) if $f \in H$ is a function with zero derivative at 0 , and c is some scalar, then $(c f)^{\prime}(0)=c\left(f^{\prime}(0)\right)=0$ by the scalar multiple rule for derivatives (or the product rule). Thus $f \in H$ and $c \in \mathbb{R}$ implies $c f \in H$. (H is closed under scalar multiplication.)
As H satisfies all the three properties, it is a subspace.

A non-example of a subspace: differentiable functions

Example

Let V denote the set of all differentiable functions from \mathbb{R} to \mathbb{R}.

A non-example of a subspace: differentiable functions

Example

Let V denote the set of all differentiable functions from \mathbb{R} to \mathbb{R}. Let

$$
H=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable and } f(0)=1\}
$$

A non-example of a subspace: differentiable functions

Example

Let V denote the set of all differentiable functions from \mathbb{R} to \mathbb{R}. Let

$$
H=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable and } f(0)=1\}
$$

Then H is not a subspace
(1) if $f(x)=1$ and $g(x)=1-x^{2}$, then $f, g \in H$ and yet $(f+g)(0)=2$, so $f+g \notin H$

A non-example of a subspace: differentiable functions

Example

Let V denote the set of all differentiable functions from \mathbb{R} to \mathbb{R}. Let

$$
H=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable and } f(0)=1\}
$$

Then H is not a subspace
(1) if $f(x)=1$ and $g(x)=1-x^{2}$, then $f, g \in H$ and yet $(f+g)(0)=2$, so $f+g \notin H$
(2) the constant function 1 belongs to H but scaling it by any number other than 1 yields a function not in V

A non-example of a subspace: differentiable functions

Example

Let V denote the set of all differentiable functions from \mathbb{R} to \mathbb{R}. Let

$$
H=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable and } f(0)=1\}
$$

Then H is not a subspace
(1) if $f(x)=1$ and $g(x)=1-x^{2}$, then $f, g \in H$ and yet $(f+g)(0)=2$, so $f+g \notin H$
(2) the constant function 1 belongs to H but scaling it by any number other than 1 yields a function not in V
(3) the zero function does not belong to H

A non-example of a subspace: differentiable functions

Example

Let V denote the set of all differentiable functions from \mathbb{R} to \mathbb{R}. Let

$$
H=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable and } f(0)=1\}
$$

Then H is not a subspace
(1) if $f(x)=1$ and $g(x)=1-x^{2}$, then $f, g \in H$ and yet $(f+g)(0)=2$, so $f+g \notin H$
(2) the constant function 1 belongs to H but scaling it by any number other than 1 yields a function not in V
(3) the zero function does not belong to H

So H violates every one of the three conditions a subset must satisfy in order to be a subspace.

A non-example of a subspace: differentiable functions

Example

Let V denote the set of all differentiable functions from \mathbb{R} to \mathbb{R}. Let

$$
H=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable and } f(0)=1\}
$$

Then H is not a subspace
(1) if $f(x)=1$ and $g(x)=1-x^{2}$, then $f, g \in H$ and yet $(f+g)(0)=2$, so $f+g \notin H$
(2) the constant function 1 belongs to H but scaling it by any number other than 1 yields a function not in V
(3) the zero function does not belong to H

So H violates every one of the three conditions a subset must satisfy in order to be a subspace. Other examples, such as the ones you will encounter on homework, might only violate one or two.

Example: Upper triangular matrices

Example

Let M_{3} denote the vector space of 3×3 matrices (with entrywise addition and scalar multiplication).

Example: Upper triangular matrices

Example

Let M_{3} denote the vector space of 3×3 matrices (with entrywise addition and scalar multiplication). Let

$$
H=\left\{A=\left[a_{i j}\right] \in M_{3}: a_{i j}=0 \text { whenever } i>j\right\}
$$

Example: Upper triangular matrices

Example

Let M_{3} denote the vector space of 3×3 matrices (with entrywise addition and scalar multiplication). Let

$$
H=\left\{A=\left[a_{i j}\right] \in M_{3}: a_{i j}=0 \text { whenever } i>j\right\}
$$

denote the collection of all upper triangular 3×3 matrices.

Example: Upper triangular matrices

Example

Let M_{3} denote the vector space of 3×3 matrices (with entrywise addition and scalar multiplication). Let

$$
H=\left\{A=\left[a_{i j}\right] \in M_{3}: a_{i j}=0 \text { whenever } i>j\right\}
$$

denote the collection of all upper triangular 3×3 matrices. Then H is a subspace.
(1) the zero vector in M_{3} is just the zero 3×3 matrix, which has no nonzero entries beneath the diagonal and hence belongs to H.

Example: Upper triangular matrices

Example

Let M_{3} denote the vector space of 3×3 matrices (with entrywise addition and scalar multiplication). Let

$$
H=\left\{A=\left[a_{i j}\right] \in M_{3}: a_{i j}=0 \text { whenever } i>j\right\}
$$

denote the collection of all upper triangular 3×3 matrices. Then H is a subspace.
(1) the zero vector in M_{3} is just the zero 3×3 matrix, which has no nonzero entries beneath the diagonal and hence belongs to H.
(2) if $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ both belong to H, then if $i>j$ we have $a_{i j}+b_{i j}=0+0=0$.

Example: Upper triangular matrices

Example

Let M_{3} denote the vector space of 3×3 matrices (with entrywise addition and scalar multiplication). Let

$$
H=\left\{A=\left[a_{i j}\right] \in M_{3}: a_{i j}=0 \text { whenever } i>j\right\}
$$

denote the collection of all upper triangular 3×3 matrices. Then H is a subspace.
(1) the zero vector in M_{3} is just the zero 3×3 matrix, which has no nonzero entries beneath the diagonal and hence belongs to H.
(2) if $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ both belong to H, then if $i>j$ we have $a_{i j}+b_{i j}=0+0=0$. Thus $A+B \in H$ also. (Closed under addition.)

Example: Upper triangular matrices

Example

Let M_{3} denote the vector space of 3×3 matrices (with entrywise addition and scalar multiplication). Let

$$
H=\left\{A=\left[a_{i j}\right] \in M_{3}: a_{i j}=0 \text { whenever } i>j\right\}
$$

denote the collection of all upper triangular 3×3 matrices. Then H is a subspace.
(1) the zero vector in M_{3} is just the zero 3×3 matrix, which has no nonzero entries beneath the diagonal and hence belongs to H.
(2) if $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ both belong to H, then if $i>j$ we have $a_{i j}+b_{i j}=0+0=0$. Thus $A+B \in H$ also. (Closed under addition.)
(3) if $A=\left[a_{i j}\right] \in H$ and $c \in \mathbb{R}$, then $c a_{i j}=0$ whenever $i>j$. So $c A \in H$ also.

Example: Upper triangular matrices

Example

Let M_{3} denote the vector space of 3×3 matrices (with entrywise addition and scalar multiplication). Let

$$
H=\left\{A=\left[a_{i j}\right] \in M_{3}: a_{i j}=0 \text { whenever } i>j\right\}
$$

denote the collection of all upper triangular 3×3 matrices. Then H is a subspace.
(1) the zero vector in M_{3} is just the zero 3×3 matrix, which has no nonzero entries beneath the diagonal and hence belongs to H.
(2) if $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ both belong to H, then if $i>j$ we have $a_{i j}+b_{i j}=0+0=0$. Thus $A+B \in H$ also. (Closed under addition.)
(3) if $A=\left[a_{i j}\right] \in H$ and $c \in \mathbb{R}$, then $c a_{i j}=0$ whenever $i>j$. So $c A \in H$ also. (Closed under scalar multiplication.)

Non-example: matrices

Example

Let M_{2} denote the vector space of 2×2 matrices. Then

$$
H=\left\{A \in M_{2}: \operatorname{det} A \neq 0\right\}
$$

the set of all invertible 2×2 matrices, is not a subspace of M_{2}.

Non-example: matrices

Example

Let M_{2} denote the vector space of 2×2 matrices. Then

$$
H=\left\{A \in M_{2}: \operatorname{det} A \neq 0\right\}
$$

the set of all invertible 2×2 matrices, is not a subspace of M_{2}. The zero is missing.

Non-example: matrices

Example

Let M_{2} denote the vector space of 2×2 matrices. Then

$$
H=\left\{A \in M_{2}: \operatorname{det} A \neq 0\right\}
$$

the set of all invertible 2×2 matrices, is not a subspace of M_{2}.
The zero is missing. You can't add, as

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \text { shows. }
$$

Non-example: matrices

Example

Let M_{2} denote the vector space of 2×2 matrices. Then

$$
H=\left\{A \in M_{2}: \operatorname{det} A \neq 0\right\}
$$

the set of all invertible 2×2 matrices, is not a subspace of M_{2}.
The zero is missing. You can't add, as
$\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]+\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ shows. You can't scale (you can scale by all nonzero real numbers but you can't scale by zero, which is needed for a subspace).

Example: polynomials

Example

Let \mathbb{P}_{3} be the vector space of polynomials with degree ≤ 3 (add and scale coefficients).

Example: polynomials

Example

Let \mathbb{P}_{3} be the vector space of polynomials with degree ≤ 3 (add and scale coefficients). Then

$$
H=\left\{a+a t+b t^{2}+b t^{3}: a, b \in \mathbb{R}\right\}
$$

the polynomials with first and second coefficients equal and third and fourth coefficients are equal, is a subspace of \mathbb{P}_{3}.

Example: polynomials

Example

Let \mathbb{P}_{3} be the vector space of polynomials with degree ≤ 3 (add and scale coefficients). Then

$$
H=\left\{a+a t+b t^{2}+b t^{3}: a, b \in \mathbb{R}\right\}
$$

the polynomials with first and second coefficients equal and third and fourth coefficients are equal, is a subspace of \mathbb{P}_{3}. You can check that the three conditions but in this example it is quicker just to notice that

$$
H=\operatorname{span}\left\{1+t, t^{2}+t^{3}\right\} .
$$

Example: polynomials

Example

Let \mathbb{P}_{3} be the vector space of polynomials with degree ≤ 3 (add and scale coefficients). Then

$$
H=\left\{a+a t+b t^{2}+b t^{3}: a, b \in \mathbb{R}\right\}
$$

the polynomials with first and second coefficients equal and third and fourth coefficients are equal, is a subspace of \mathbb{P}_{3}. You can check that the three conditions but in this example it is quicker just to notice that

$$
H=\operatorname{span}\left\{1+t, t^{2}+t^{3}\right\} .
$$

Thus H is the span of a set of vectors in \mathbb{P}_{3}, which means that H is automatically a subspace.

Non-example: polynomials

Example

Let \mathbb{P}_{3} denote the vector space of all polynomials of degree ≤ 3 (add and scale coefficients).

Non-example: polynomials

Example

Let \mathbb{P}_{3} denote the vector space of all polynomials of degree ≤ 3 (add and scale coefficients). Then

$$
H=\left\{a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}: a_{i} \geq 0\right\},
$$

the set of all polynomials with non-negative coefficients, is not a subspace of \mathbb{P}_{3}.

Non-example: polynomials

Example

Let \mathbb{P}_{3} denote the vector space of all polynomials of degree ≤ 3 (add and scale coefficients). Then

$$
H=\left\{a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}: a_{i} \geq 0\right\},
$$

the set of all polynomials with non-negative coefficients, is not a subspace of \mathbb{P}_{3}. It contains the zero vector because we can set all the coefficients to 0 .

Non-example: polynomials

Example

Let \mathbb{P}_{3} denote the vector space of all polynomials of degree ≤ 3 (add and scale coefficients). Then

$$
H=\left\{a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}: a_{i} \geq 0\right\},
$$

the set of all polynomials with non-negative coefficients, is not a subspace of \mathbb{P}_{3}. It contains the zero vector because we can set all the coefficients to 0 . It is closed under addition because adding non-negative numbers yields non-negative numbers.

Non-example: polynomials

Example

Let \mathbb{P}_{3} denote the vector space of all polynomials of degree ≤ 3 (add and scale coefficients). Then

$$
H=\left\{a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}: a_{i} \geq 0\right\}
$$

the set of all polynomials with non-negative coefficients, is not a subspace of \mathbb{P}_{3}. It contains the zero vector because we can set all the coefficients to 0 . It is closed under addition because adding non-negative numbers yields non-negative numbers. What's wrong?

Non-example: polynomials

Example

Let \mathbb{P}_{3} denote the vector space of all polynomials of degree ≤ 3 (add and scale coefficients). Then

$$
H=\left\{a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}: a_{i} \geq 0\right\},
$$

the set of all polynomials with non-negative coefficients, is not a subspace of \mathbb{P}_{3}. It contains the zero vector because we can set all the coefficients to 0 . It is closed under addition because adding non-negative numbers yields non-negative numbers. What's wrong? Why isn't H a subspace?

