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Today’s lecture

1 We will discuss subspaces of Rn: subsets in which you can
add and scale vectors.

2 We will talk about bases

3 Column space and null space of a matrix; finding bases for
these spaces.

4 Vector spaces

5 Subspaces of vector spaces
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Subspaces of Rn

We have drawn a lot of attention to the fact that for a linear
transformation T : Rn → Rm, the range need not equal the
codomain (Rm).

Now we are going to discuss more general
collections of vectors which will include all the ranges.

Definition

A subspace of Rn is a subset H ⊂ Rn satisfying three properties:

1 The zero vector 0 ∈ H.

2 If u, v ∈ H, then u + v ∈ H. (Closed under addition.)

3 For each u ∈ H and each scalar c ∈ R, the vector cu ∈ H
(Closed under scalar multiplication.)
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Examples of subspaces

There are a lot of examples we have already seen.

1 Rn is always a subspace of itself

2 The zero subspace H = {0} ⊂ Rn is always a subspace:
0 + 0 = 0 and c0 = 0 for any scalar c .

3 In R2, any straight line through the origin is a subspace. That
is: if k is a number (representing the slope of the line), then
H = {(x , y) : y = kx} ⊂ R2 is a subspace of R2.

(x , kx) + (x ′, kx ′) = (x + x ′, kx + kx ′) = (x + x ′, k(x + x ′)).

(y -axis is the subspace {(0, y)|y ∈ R}.
4 In R3, any plane passing through the origin is a subspace.
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Non-examples

There are many non-examples of subspaces:

1 if v ∈ Rn is a nonzero vector, then H = {v} is not a subspace.
(Why not?)

2 in R2 if H is a straight line not passing through the origin,
then H is not a subspace of R2 (Why not?)

3 in R2, if H = {(x , y) ∈ R2 : x , y are integers}, then H
contains 0 and is closed under addition.Is H a subspace?
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Spans are subspaces

Example

Let v1, v2, . . . , vp ∈ Rn be vectors.

Then Span{v1, . . . , vp} is a
subspace of Rn: We can add linear combinations(

p∑
i=1

civi

)
+

(
p∑

i=1

divi

)
=

p∑
i=1

(ci + di )vi

and obtain a new linear combination with weights ci + di .Similarly
if k is a scalar

k

(
p∑

i=1

divi

)
=

p∑
i=1

(kdi )vi

so we obtain a new linear combination with weights kdi . This
shows that the span of {v1, . . . , vp} is a subspace of Rn.
Sometimes we’ll call Span{v1, . . . , vp} the subspace spanned by
{v1, . . . , vp}.
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Column space

If you have an m × n matrix A, then the columns are all vectors in

Rm. Thus you can consider their span, which gets a special name.

Definition

Let A be an m × n matrix with columns a1, . . . , an. Then the
column space of A is the set ColA := span{a1, . . . , an}

Example

Let A =

[
1 1 0
0 2 3

]
Then

[
1
1

]
belongs to ColA, because

[
1
1

]
=

1

2

[
1
0

]
+ 1

[
1
2

]
+ 0

[
0
3

]
The vector is a linear combination of the columns of A, so it
belongs to the column space of A.
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What’s in the column space?

Determining which vectors b are in the column space ColA is the
same as determining which systems Ax = b are consistent.

Thus
we can say whether or not a vector is in the column space of A by
reducing the augmented matrix to echelon form.

Example

Does

7
8
9

 belong to the column space of the matrix

1 4
2 5
3 6

? We

form the augmented matrix and reduce1 4 7
2 5 8
3 6 9

 ∼
1 4 7

0 −3 −6
0 0 0


System is consistent, so b ∈ ColA.
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Null space

Definition

Let A be a m × n matrix. Then the null space of A is the set
NulA ⊂ Rn of all vectors x ∈ Rn such that Ax = 0. That is, NulA
is just the solution set of the homogeneous system Ax = 0.

It’s easy to test if u belongs to NulA: just multiply it by A and see
if you get 0.
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Null spaces are subspaces

The following theorem should not shock you.

Theorem

The null space of an m × n matrix A is a subspace of Rn.

Proof.

1 0 ∈ NulA

2 if Au = 0 = Av, then A(u + v) = 0 + 0 = 0 So NulA is
closed under addition.

3 if Au = 0 and c is a scalar, then A(cu) = c(Au) = c0 = 0.
So NulA is closed under scalar multiplication.

Dan Crytser Lecture 13: Vector spaces



Null spaces are subspaces

The following theorem should not shock you.

Theorem

The null space of an m × n matrix A is a subspace of Rn.

Proof.

1 0 ∈ NulA

2 if Au = 0 = Av, then A(u + v) = 0 + 0 = 0 So NulA is
closed under addition.

3 if Au = 0 and c is a scalar, then A(cu) = c(Au) = c0 = 0.
So NulA is closed under scalar multiplication.

Dan Crytser Lecture 13: Vector spaces



Null spaces are subspaces

The following theorem should not shock you.

Theorem

The null space of an m × n matrix A is a subspace of Rn.

Proof.

1 0 ∈ NulA

2 if Au = 0 = Av, then A(u + v) = 0 + 0 = 0 So NulA is
closed under addition.

3 if Au = 0 and c is a scalar, then A(cu) = c(Au) = c0 = 0.
So NulA is closed under scalar multiplication.

Dan Crytser Lecture 13: Vector spaces



Null spaces are subspaces

The following theorem should not shock you.

Theorem

The null space of an m × n matrix A is a subspace of Rn.

Proof.

1 0 ∈ NulA

2 if Au = 0 = Av, then A(u + v) = 0 + 0 = 0 So NulA is
closed under addition.

3 if Au = 0 and c is a scalar, then A(cu) = c(Au) = c0 = 0.
So NulA is closed under scalar multiplication.

Dan Crytser Lecture 13: Vector spaces



Null spaces are subspaces

The following theorem should not shock you.

Theorem

The null space of an m × n matrix A is a subspace of Rn.

Proof.

1 0 ∈ NulA

2 if Au = 0 = Av, then A(u + v) = 0 + 0 = 0

So NulA is
closed under addition.

3 if Au = 0 and c is a scalar, then A(cu) = c(Au) = c0 = 0.
So NulA is closed under scalar multiplication.

Dan Crytser Lecture 13: Vector spaces



Null spaces are subspaces

The following theorem should not shock you.

Theorem

The null space of an m × n matrix A is a subspace of Rn.

Proof.

1 0 ∈ NulA

2 if Au = 0 = Av, then A(u + v) = 0 + 0 = 0 So NulA is
closed under addition.

3 if Au = 0 and c is a scalar, then A(cu) = c(Au) = c0 = 0.
So NulA is closed under scalar multiplication.

Dan Crytser Lecture 13: Vector spaces



Null spaces are subspaces

The following theorem should not shock you.

Theorem

The null space of an m × n matrix A is a subspace of Rn.

Proof.

1 0 ∈ NulA

2 if Au = 0 = Av, then A(u + v) = 0 + 0 = 0 So NulA is
closed under addition.

3 if Au = 0 and c is a scalar, then A(cu) = c(Au) = c0 = 0.

So NulA is closed under scalar multiplication.

Dan Crytser Lecture 13: Vector spaces



Null spaces are subspaces

The following theorem should not shock you.

Theorem

The null space of an m × n matrix A is a subspace of Rn.

Proof.

1 0 ∈ NulA

2 if Au = 0 = Av, then A(u + v) = 0 + 0 = 0 So NulA is
closed under addition.

3 if Au = 0 and c is a scalar, then A(cu) = c(Au) = c0 = 0.
So NulA is closed under scalar multiplication.

Dan Crytser Lecture 13: Vector spaces



What do you need to span a set?

We’ve seen that a set v1, . . . , vp of vectors spans a subspace.

Now
we consider how many vectors we actually need to span a subspace.

Example

Let v1 = (1, 2) and v2 = (2, 4) in R2. Any linear combination of
these is just a scalar multiple of v1. Thus

span{v1, v2} = span{v1}.

If u1 = (1, 1) and u2 = (1, 2), then

span{u1} ( span{u1,u2}

We are going to be interested in throwing out as many vectors as
we can without changing the span.

Dan Crytser Lecture 13: Vector spaces



What do you need to span a set?

We’ve seen that a set v1, . . . , vp of vectors spans a subspace. Now
we consider how many vectors we actually need to span a subspace.

Example

Let v1 = (1, 2) and v2 = (2, 4) in R2. Any linear combination of
these is just a scalar multiple of v1. Thus

span{v1, v2} = span{v1}.

If u1 = (1, 1) and u2 = (1, 2), then

span{u1} ( span{u1,u2}

We are going to be interested in throwing out as many vectors as
we can without changing the span.

Dan Crytser Lecture 13: Vector spaces



What do you need to span a set?

We’ve seen that a set v1, . . . , vp of vectors spans a subspace. Now
we consider how many vectors we actually need to span a subspace.

Example

Let v1 = (1, 2) and v2 = (2, 4) in R2.

Any linear combination of
these is just a scalar multiple of v1. Thus

span{v1, v2} = span{v1}.

If u1 = (1, 1) and u2 = (1, 2), then

span{u1} ( span{u1,u2}

We are going to be interested in throwing out as many vectors as
we can without changing the span.

Dan Crytser Lecture 13: Vector spaces



What do you need to span a set?

We’ve seen that a set v1, . . . , vp of vectors spans a subspace. Now
we consider how many vectors we actually need to span a subspace.

Example

Let v1 = (1, 2) and v2 = (2, 4) in R2. Any linear combination of
these is just a scalar multiple of v1. Thus

span{v1, v2} = span{v1}.

If u1 = (1, 1) and u2 = (1, 2), then

span{u1} ( span{u1,u2}

We are going to be interested in throwing out as many vectors as
we can without changing the span.

Dan Crytser Lecture 13: Vector spaces



What do you need to span a set?

We’ve seen that a set v1, . . . , vp of vectors spans a subspace. Now
we consider how many vectors we actually need to span a subspace.

Example

Let v1 = (1, 2) and v2 = (2, 4) in R2. Any linear combination of
these is just a scalar multiple of v1. Thus

span{v1, v2} = span{v1}.

If u1 = (1, 1) and u2 = (1, 2), then

span{u1} ( span{u1,u2}

We are going to be interested in throwing out as many vectors as
we can without changing the span.

Dan Crytser Lecture 13: Vector spaces



What do you need to span a set?

We’ve seen that a set v1, . . . , vp of vectors spans a subspace. Now
we consider how many vectors we actually need to span a subspace.

Example

Let v1 = (1, 2) and v2 = (2, 4) in R2. Any linear combination of
these is just a scalar multiple of v1. Thus

span{v1, v2} = span{v1}.

If u1 = (1, 1) and u2 = (1, 2), then

span{u1} ( span{u1,u2}

We are going to be interested in throwing out as many vectors as
we can without changing the span.

Dan Crytser Lecture 13: Vector spaces



Bases

Definition

Let H ⊂ Rn be a subspace of Rn. Then a basis for H is a linearly
independent set in H whose span is all of H.

(Plural is bases, pron.
bay-seize).

Remark

It is not enough for a set to be linearly independent in order for it
to be a basis, nor is it enough for a set to be spanning. It has to
be both linearly independent and spanning.
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Examples of bases

The most important example of a basis is one we’ve worked with a
lot.

Definition

The columns of any invertible n × n matrix form a basis for Rn:
they are linearly independent and spanning by the Invertible Matrix
Theorem. In particular the columns of In, the n × n identity
matrix, form a basis for Rn called the standard basis for Rn.

e1 =


1
0
...
0
0

 , e2 =


0
1
0
...
0

 , . . . , en =


0
0
...
0
1
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Example: not a basis

Example

Let H = {(x , x , y)|x , y ∈ R} ⊂ R3, so that H is a subspace of R3

1 S1 = {(1, 1, 0), (2, 2, 0), (0, 0, 1)} spans H because any
(x , x , y) ∈ H is
(x , x , y) = x(1, 1, 0) + y(0, 0, 1) ∈ span{(1, 1), (2, 2)}. S1 is
not a basis for H. Why?

2 S2 = {(1, 1, 0)} is a linearly independent set in H, because it
only has one element and that element is nonzero. However,
S2 is not a basis for H. Why?
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Finding bases for NulA

Finding a basis for NulA amounts to writing down a parametric
description of the solutions to Ax = 0.

Example

Let’s find a basis for NulA, where A =

[
1 1 1 0
2 3 1 2

]
. These will

be solutions to Ax = 0, so we have NulA ⊂ R4. Augment and row
reduce: 1 1 1 0 0

2 3 1 2 0
3 2 1 1 0

 ∼
1 0 0 0 0

0 1 0 1 0
0 0 1 −1 0


The solution is x1 = 0, x2 = −x4, x3 = x4, x4 free. Thus

NulA = span{(0,−1, 1, 1)}

and {(0,−1, 1, 1)} is a basis for the null space of A.
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Finding bases for ColA

Computing a basis for ColA is straightforward:

Theorem

Let A be an m × n matrix. Then the set of all columns of A which
contain pivots form a basis for ColA.

This requires delicacy to apply: you have to reduce to echelon form
to see where the pivots are, but you do not use the columns of
the echelon form. You use the columns of the matrix A, not the
columns of its echelon form.
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Example: basis for ColA

Example

Let A =

[
1 1 2
−1 −1 3

]
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We compute a basis for ColA
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What are we doing?

So far we’ve defined subspaces of Rn as things where you can add
and scale vectors.

There are in fact many examples of sets with
naturally defined addition and scalar multiplication.
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Vector spaces: definition

Definition

A vector space is a nonempty set V of objects, called vectors,
which we can add and multiply by scalars and all the following
axioms hold whenever u, v ∈ V , c , d ∈ R:

1 u + v ∈ V

2 u + v = v + u

3 u + (v + w) = (u + v) + w

4 there is a zero vector 0 ∈ V such that u + 0 = u

5 there is −u ∈ V with u + (−u) = 0

6 the scalar multiple cu ∈ V

7 c(u + v) = cu + cv

8 (c + d)u = cu + du

9 c(du) = (cd)u

10 1u = u
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What does all that mean?

We know that when V = Rn all these properties of addition and
scalar multiplication hold.

The idea is that any set with addition
and scalar multiplication which plays “this nice” will enjoy all the
nice properties of Rn.
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Example of vector spaces: differentiable functions

Example

Let

V = {f : R→ R|f is differentiable at every point x ∈ R}.

We can define pointwise addition and scalar multiplication on
this set by

(f + g)(x) = f (x) + g(x)

(cf )(x)c(f (x))

for f , g ∈ V and c ∈ R. It is a fact from calculus that if f and g
are differentiable then f + g is differntiable and cf is differentiable.
Thus f + g ∈ V and cf ∈ V .
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Examples of vector space: matrices

Example

Let m and n be integers and define

M = Mm,n = {A = [aij ] : A is a m × n matrix}.

We can define addition and scalar multiplication entry-wise the
way we discussed in section 2.1.

All the nice properties of matrix
algebra from 2.1 guarantee that M is a vector space.

Remark

Noteice that you get a different vector space for every choice of
(m, n): you can only add vectors of the same size.Thus there is the
vector space of 2× 2 matrices, the vector space of 3× 2 matrices,
etc.
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Examples of vector spaces: polynomials

Example

Let n ≥ 1 be an integer and define

Pn = {a0 + a1t + a2t
2 + . . . + ant

n : a0, . . . , an ∈ R}.

Thus n is the set of all polynomials with degree ≤ n. You can add
polynomials

(a0+a1t++ . . .+ant
n)+(b0+b1t+. . .+bnt

n) = (a0+b0)+(a1+b1)t+. . .+(an+bn)tn.

You can multiply polynomials by scalars

c(a0 + a1t + + . . . + ant
n) = (ca0) + (ca1)t + . . . + (can)tn.

Checking that all the vector space axioms hold is kinda boring but
within your powers (hah, ugh).
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You can multiply polynomials by scalars

c(a0 + a1t + + . . . + ant
n) = (ca0) + (ca1)t + . . . + (can)tn.

Checking that all the vector space axioms hold is kinda boring but
within your powers (hah, ugh).
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Spans in vector spaces

Definition

Let V be a vector space and let S = {v1, v2, . . . , vp} be some
subset of vectors in V .

Then the span of S , denote spanS is the
subset of V consisting of all linear combinations

n∑
i=1

civi

of the vectors in S . (You can modify this notation to allow for
infinite sets: just require that all but finitely many of the weights
ci are 0.)
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Subspaces

Definition

Let V be a vector space. A subspace of V is a nonempty subset
H ⊂ V such that

1 the zero vector of V belongs to H

2 the sum of any two vectors in H again belongs to H

3 the scalar multiple of a vector in H by
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Example: f ′(0) = 0

Let V denote the vector space of all differentiable function with
pointwise addition and scalar multiplication.

Define

H = {f : R→ R|f is differentiable, f ′(0) = 0}.

Then H is a subspace of V .

1 the zero vector in V is the constant zero function. This is
differentiable with derivative 0 at x = 0. Thus 0 ∈ H

2 if f and g are differentiable functions on R with
f ′(0) = 0 = g ′(0) (i.e. if f , g ∈ H), then (f + g)′(0) = 0 by
the sum rule for derivatives. Thus f , g ∈ H implies
f + g ∈ H. (H is closed under addition).

3 if f ∈ H is a function with zero derivative at 0, and c is some
scalar, then (cf )′(0) = c(f ′(0)) = 0 by the scalar multiple rule
for derivatives (or the product rule). Thus f ∈ H and c ∈ R
implies cf ∈ H. (H is closed under scalar multiplication.)

As H satisfies all the three properties, it is a subspace.
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A non-example of a subspace: differentiable functions

Example

Let V denote the set of all differentiable functions from R to R.

Let
H = {f : R→ R|f is differentiable and f (0) = 1}.

Then H is not a subspace

1 if f (x) = 1 and g(x) = 1− x2, then f , g ∈ H and yet
(f + g)(0) = 2, so f + g 6∈ H

2 the constant function 1 belongs to H but scaling it by any
number other than 1 yields a function not in V

3 the zero function does not belong to H

So H violates every one of the three conditions a subset must
satisfy in order to be a subspace. Other examples, such as the ones
you will encounter on homework, might only violate one or two.
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Example: Upper triangular matrices

Example

Let M3 denote the vector space of 3× 3 matrices (with entrywise
addition and scalar multiplication).

Let

H = {A = [aij ] ∈ M3 : aij = 0 whenever i > j}

denote the collection of all upper triangular 3× 3 matrices. Then
H is a subspace.

1 the zero vector in M3 is just the zero 3× 3 matrix, which has
no nonzero entries beneath the diagonal and hence belongs to
H.

2 if A = [aij ] and B = [bij ] both belong to H, then if i > j we
have aij + bij = 0 + 0 = 0. Thus A + B ∈ H also. (Closed
under addition.)

3 if A = [aij ] ∈ H and c ∈ R, then caij = 0 whenever i > j . So
cA ∈ H also. (Closed under scalar multiplication.)
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Non-example: matrices

Example

Let M2 denote the vector space of 2× 2 matrices. Then

H = {A ∈ M2 : detA 6= 0},

the set of all invertible 2× 2 matrices, is not a subspace of M2.

The zero is missing. You can’t add, as[
1 0
0 −1

]
+

[
−1 0
0 1

]
=

[
0 0
0 0

]
shows. You can’t scale (you can

scale by all nonzero real numbers but you can’t scale by zero,
which is needed for a subspace).
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Example: polynomials

Example

Let P3 be the vector space of polynomials with degree ≤ 3 (add
and scale coefficients).

Then

H = {a + at + bt2 + bt3 : a, b ∈ R},

the polynomials with first and second coefficients equal and third
and fourth coefficients are equal, is a subspace of P3. You can
check that the three conditions but in this example it is quicker
just to notice that

H = span{1 + t, t2 + t3}.

Thus H is the span of a set of vectors in P3, which means that H
is automatically a subspace.
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Non-example: polynomials

Example

Let P3 denote the vector space of all polynomials of degree ≤ 3
(add and scale coefficients).

Then

H = {a0 + a1t + a2t
2 + a3t

3 : ai ≥ 0},

the set of all polynomials with non-negative coefficients, is not a
subspace of P3. It contains the zero vector because we can set all
the coefficients to 0. It is closed under addition because adding
non-negative numbers yields non-negative numbers. What’s
wrong? Why isn’t H a subspace?
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