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Today’s lecture

1 We will see several nice properties of determinants that
interact meaningfully with matrix operations

2 Learn how row operations alter the determinant of a matrix

3 Learn Cramer’s rule which allows us to solve matrix equations
by computing determinants
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Determinants

Yesterday we saw that the determinant of a square matrix is the
number

detA =
n∑

i=1

a1,jC1,j

where Ci ,j is the (i , j)-cofactor (−1)i+j detAij . You can take the
cofactor expanison along the ith row:

detA =
n∑

j=1

ai ,jCi ,j

or along the jth column

detA =
n∑

i=1

ai ,jCi ,j

One of our goals is to determine some tricks for computing the
determinant of a matrix.
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Determinants and interchange

The elementary row operations each change the determinant in a
prescribed way.

Example

Let A =

[
1 0
0 1

]
. The determinant of A is 1. If we interchange the

rows of A, we obtain E1A =

[
0 1
1 0

]
, which has determinant −1.
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Determinants and replacement

Example

If A =

[
1 2
2 3

]
then the determinant of A is −1.

If we add 4 times

row 1 to row 2, then we obtain E2A =

[
1 2
6 11

]
. The determinant

of the new matrix is −1 also.
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Determinants and scaled rows

Example

If A =

1 0 2
0 2 7
0 0 9

 then the determinant of A is just the product of

the diagonal entries.

If we scale the second row by 10, to obtain

E3A =

1 0 2
0 20 70
0 0 9

 then the determinant of the new matrix is 10

times the determinant of the old matrix.
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Determinants and elementary operations

Theorem

Let A be a square matrix.

1 If we interchange two rows via E1 then detE1A = − detA.

2 If we add a multiple of one row to another row via E2, then
detE2A = detA.

3 If we scale a row of A by the constant k via E3 then
detE3A = k detA.

Note that if you scale the entire matrix A by the same constant k,
that has the same effect as scaling each of the n rows in order:
hence det(kA) = kn detA.
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Row operations and computing determinants

You can compute determinants by reducing to echelon form (upper
triangular) and then using the property that the determinant of a
triangular matrix is the product of the diagonal elements.

We will
denote detA by |A| to save time.

Example

Let A =

[
100 200

2 3

]
. Then |A| = 100

∣∣∣∣1 2
2 3

∣∣∣∣ = −100.
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More examples: row reducton and determinants

You can use row reduction to find determinants easily

A =

∣∣∣∣∣∣∣∣
1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 2 3 4
0 −1 −2 −3
0 −2 −4 −6
0 −3 −6 −9

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 2 3 4
0 −1 −2 −3
0 −2 −4 −6
0 −3 −6 −9

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 2 3 4
0 −1 −2 −3
0 −2 −4 −6
0 −3 −6 −9

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 2 3 4
0 −1 −2 −3
0 0 0 0
0 −3 −6 −9

∣∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣∣
1 2 3 4
0 −1 −2 −3
0 0 0 0
0 −3 −6 −9

∣∣∣∣∣∣∣∣ = 0

So |A| = 0.
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Determinants and echelon form

You can compute the determinant of a matrix by row reducing to
echelon form.

Theorem

Let A be an n × n matrix and let U be an echelon form computed
with exactly r row interchanges. Let u11, u22, . . . , unn be the
diagonal entries in U. Then |A| = (−1)ru11u22 . . . unn.

Proof.

None of the row replacement operations change the determinant,
so we only have to keep track of the effect of the scaling and
interchange operations. You can put a matrix in echelon form
without any scaling. So the only thing to keep track of is the
interchanges. So |A| = (−1)r |U|. As the echelon form is upper
triangular, its determinant is the product of its diagonal entries
|U| = u11u22 . . . unn
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Example: determinants and echelon form

Suppose that we have a matrix A and we know that A can be
reduced to the echelon form

U =

1 2 0
0 7 −1
0 0 3


using some number of replacement operations and one row
interchange.

What is |A|? We use the previous theorem:

|A| = (−1)|U| = −(1)(7)(3) = −21.
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Invertibility and determinant

We see that if A is n × n and U is an echelon form for A which we
obtained using replacements and r interchanges then
|A| = (−1)r |U| = (−1)ru11 . . . unn.

A has n pivots if and only if all
the entries u11, . . . , unn are nonzero.

Theorem

Let A be a square matrix. Then A is invertible if and only if
detA 6= 0

Fact

This meshes with the 2× 2 case.
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Determinants with cofactors and row operations

We can use cofactors and row ops to compute determinants with
max speed.

Example

Compute

∣∣∣∣∣∣∣∣
1 2 0 1
−1 3 2 2
0 5 1 1
0 −5 2 2

∣∣∣∣∣∣∣∣. First clean out beneath the first pivot

|A| =

∣∣∣∣∣∣∣∣
1 2 0 1
0 5 2 3
0 5 1 1
0 −5 2 2

∣∣∣∣∣∣∣∣ = 1

∣∣∣∣∣∣
5 2 3
5 1 1
−5 2 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 4 5
0 3 3
−5 2 2

∣∣∣∣∣∣ Now we

expand along the first column to get

|A| = (−5)

∣∣∣∣4 5
3 3

∣∣∣∣ = (−5)(−3) = 15.
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Determinants and cofactor expansion

Let’s compute

∣∣∣∣∣∣∣∣
−1 2 3 0
3 4 3 0
5 4 6 6
4 2 4 3

∣∣∣∣∣∣∣∣

We see that the fourth column has

some zeros. We can get more by subtracting 2 times the fourth
fow from the third row. Then we take a cofactor expansion∣∣∣∣∣∣∣∣

−1 2 3 0
3 4 3 0
5 4 6 6
4 2 4 3

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
−1 2 3 0
3 4 3 0
−3 0 −2 0
4 2 4 3

∣∣∣∣∣∣∣∣
= 3

∣∣∣∣∣∣
−1 2 3
3 4 3
−3 0 −2

∣∣∣∣∣∣ = (−3)

∣∣∣∣2 3
4 3

∣∣∣∣−2

∣∣∣∣−1 2
3 4

∣∣∣∣ = 3((−3)(−6)+(−2)(−10)) = 3(38) = 114
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Determinants and transpose

Theorem

If A is a square matrix then detA = detAT . That is, a matrix and
its transpose have the same determinant.

Proof.

You just flip the cofactor expansions: if you compute the
determinant of A by cofactor expansion along row j , compute the
determinant of AT along its jth column, and vice versa.

Since you
take determinants of transposes of smaller matrices.

Any column operation (interchange columns, replace column, scale
column) has the same effect on the determinant as the
corresponding row operation. So replacing columns does not
change the determinant, interchanging two columns multiplies the
determinant by −1, scaling a column scales the determinant.
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Determinants multiply

A really important property of determinants is that they multiply
with matrix multiplication.

Theorem

Let A and B be n × n. Then det(AB) = det(A) det(B).

Example

We have [
1 2
7 5

]
︸ ︷︷ ︸
det=−9

[
3 0
−1 −1

]
︸ ︷︷ ︸

det=−3

=

[
1 −2

16 −5

]
︸ ︷︷ ︸

det=27
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Non-linearity of the determinant

It is not the case that det(A + B) = det(A) + det(B). For example[
1 0
0 −1

]
︸ ︷︷ ︸
det=−1

+

[
−1 0
0 1

]
︸ ︷︷ ︸
det=−1

=

[
0 0
0 0

]
︸ ︷︷ ︸
det=0

Also it is not true that det cA = c detA for all matrices A and
scalars c . Instead det cA = cn detA.
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Cramer’s rule

You can use determinants to solve systems Ax = b for invertible A,
without having to find the inverse of A.

Here if A is an n × n
matrix and b is in Rn, then for any i = 1, . . . , n we let Ai (b) be
the n × n matrix obtained by replacing the ith column of A with b

Theorem (Cramer’s rule)

Let A be an invertible n × n matrix. For any b ∈ Rn, the unique

solution x =


x1
x2
...
xn

 of Ax = b has entries given by

xi =
detAi (b

detA
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Solving a system with Cramer’s rule

Example

Let A =

[
1 8
2 17

]
(which has determinant 1) and b =

[
1
1

]
.

To find

the solution to Ax = b we compute

x1 =

det

[
1 8
1 17

]
1

= 9

x2 =

det

[
1 1
2 1

]
1

= −1

Thus the unique solution is x =

[
9
−1

]
.

Dan Crytser Lecture 12: Determinants



Solving a system with Cramer’s rule

Example

Let A =

[
1 8
2 17

]
(which has determinant 1) and b =

[
1
1

]
. To find

the solution to Ax = b we compute

x1 =

det

[
1 8
1 17

]
1

= 9

x2 =

det

[
1 1
2 1

]
1

= −1

Thus the unique solution is x =

[
9
−1

]
.

Dan Crytser Lecture 12: Determinants



Solving a system with Cramer’s rule

Example

Let A =

[
1 8
2 17

]
(which has determinant 1) and b =

[
1
1

]
. To find

the solution to Ax = b we compute

x1 =

det

[
1 8
1 17

]
1

= 9

x2 =

det

[
1 1
2 1

]
1

= −1

Thus the unique solution is x =

[
9
−1

]
.

Dan Crytser Lecture 12: Determinants



Solving a system with Cramer’s rule

Example

Let A =

[
1 8
2 17

]
(which has determinant 1) and b =

[
1
1

]
. To find

the solution to Ax = b we compute

x1 =

det

[
1 8
1 17

]
1

= 9

x2 =

det

[
1 1
2 1

]
1

= −1

Thus the unique solution is x =

[
9
−1

]
.

Dan Crytser Lecture 12: Determinants



Solving a system with Cramer’s rule

Example

Let A =

[
1 8
2 17

]
(which has determinant 1) and b =

[
1
1

]
. To find

the solution to Ax = b we compute

x1 =

det

[
1 8
1 17

]
1

= 9

x2 =

det

[
1 1
2 1

]
1

= −1

Thus the unique solution is x =

[
9
−1

]
.

Dan Crytser Lecture 12: Determinants



Solving a system with Cramer’s rule

Example

Let A =

[
1 8
2 17

]
(which has determinant 1) and b =

[
1
1

]
. To find

the solution to Ax = b we compute

x1 =

det

[
1 8
1 17

]
1

= 9

x2 =

det

[
1 1
2 1

]
1

= −1

Thus the unique solution is x =

[
9
−1

]
.

Dan Crytser Lecture 12: Determinants



Computng areas with determinants

When you are studying geometry you study parallelograms in R2

and parallelepipeds in R3. A pair of vectors determines a
parallelogram and a triple of vectors determines a parallelepiped.

Theorem

Let A be 2× 2. If we treat the columns of A as the vertices in a
paralleogram that are adjacent to the origin, then the area of that
parallelogram is | detA|. If A is 3× 3 and we treat the columns of
A as the vertices in a parallelepiped that are adjacent the origin,
then the area of that parallelepiped is | detA|.
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Examples of areas of parallelograms

Example

Let A =

[
1 2
1 0

]
. Then the columns of A define a parallelogram

with vertices at (0, 0), (1, 2), (1, 0), (2, 2).

The area of this
parallelogram is | detA| = | − 2| = 2 (be careful not to confuse the
determinant bars we sometimes use with the bars for absolute
value).
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Examples of volume of parallelepipeds

Example

Let A =

1 3 1
3 1 1
0 0 3

.

The columns of A define a parallelepiped

with vertices
(0, 0, 0), (1, 3, 0), (3, 1, 0), (4, 4, 0), (1, 1, 3), (2, 4, 3), (4, 2, 3), (5, 5, 3).
The volume of this parallelepiped is

| detA| = 24.
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