Lecture 12：Determinants

Danny W．Crytser

April 15， 2014

(1) We will see several nice properties of determinants that interact meaningfully with matrix operations
(2) Learn how row operations alter the determinant of a matrix
(3) Learn Cramer's rule which allows us to solve matrix equations by computing determinants

Determinants

Yesterday we saw that the determinant of a square matrix is the number

$$
\operatorname{det} A=\sum_{i=1}^{n} a_{1, j} C_{1, j}
$$

Determinants

Yesterday we saw that the determinant of a square matrix is the number

$$
\operatorname{det} A=\sum_{i=1}^{n} a_{1, j} C_{1, j}
$$

where $C_{i, j}$ is the (i, j)-cofactor $(-1)^{i+j} \operatorname{det} A_{i j}$.

Determinants

Yesterday we saw that the determinant of a square matrix is the number

$$
\operatorname{det} A=\sum_{i=1}^{n} a_{1, j} C_{1, j}
$$

where $C_{i, j}$ is the (i, j)-cofactor $(-1)^{i+j} \operatorname{det} A_{i j}$. You can take the cofactor expanison along the i th row:

$$
\operatorname{det} A=\sum_{j=1}^{n} a_{i, j} C_{i, j}
$$

or along the j th column

Determinants

Yesterday we saw that the determinant of a square matrix is the number

$$
\operatorname{det} A=\sum_{i=1}^{n} a_{1, j} C_{1, j}
$$

where $C_{i, j}$ is the (i, j)-cofactor $(-1)^{i+j} \operatorname{det} A_{i j}$. You can take the cofactor expanison along the i th row:

$$
\operatorname{det} A=\sum_{j=1}^{n} a_{i, j} C_{i, j}
$$

or along the j th column

$$
\operatorname{det} A=\sum_{i=1}^{n} a_{i, j} C_{i, j}
$$

Determinants

Yesterday we saw that the determinant of a square matrix is the number

$$
\operatorname{det} A=\sum_{i=1}^{n} a_{1, j} C_{1, j}
$$

where $C_{i, j}$ is the (i, j)-cofactor $(-1)^{i+j} \operatorname{det} A_{i j}$. You can take the cofactor expanison along the i th row:

$$
\operatorname{det} A=\sum_{j=1}^{n} a_{i, j} C_{i, j}
$$

or along the j th column

$$
\operatorname{det} A=\sum_{i=1}^{n} a_{i, j} C_{i, j}
$$

One of our goals is to determine some tricks for computing the determinant of a matrix.

Determinants and interchange

The elementary row operations each change the determinant in a prescribed way.

Example

Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. The determinant of A is 1 . If we interchange the rows of A, we obtain $E_{1} A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, which has determinant -1 .

Determinants and interchange

The elementary row operations each change the determinant in a prescribed way.

Example

Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. The determinant of A is 1 . If we interchange the rows of A, we obtain $E_{1} A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, which has determinant -1 .

Determinants and replacement

Example

If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ then the determinant of A is -1 .

Determinants and replacement

Example

If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ then the determinant of A is -1 . If we add 4 times row 1 to row 2, then we obtain $E_{2} A=\left[\begin{array}{cc}1 & 2 \\ 6 & 11\end{array}\right]$.

Determinants and replacement

Example

If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ then the determinant of A is -1 . If we add 4 times row 1 to row 2 , then we obtain $E_{2} A=\left[\begin{array}{cc}1 & 2 \\ 6 & 11\end{array}\right]$. The determinant of the new matrix is -1 also.

Determinants and scaled rows

Example

If $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 7 \\ 0 & 0 & 9\end{array}\right]$ then the determinant of A is just the product of the diagonal entries.

Determinants and scaled rows

Example

If $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 7 \\ 0 & 0 & 9\end{array}\right]$ then the determinant of A is just the product of the diagonal entries. If we scale the second row by 10 , to obtain
$E_{3} A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & 20 & 70 \\ 0 & 0 & 9\end{array}\right]$

Determinants and scaled rows

Example

If $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 7 \\ 0 & 0 & 9\end{array}\right]$ then the determinant of A is just the product of the diagonal entries. If we scale the second row by 10 , to obtain $E_{3} A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & 20 & 70 \\ 0 & 0 & 9\end{array}\right]$ then the determinant of the new matrix is 10 times the determinant of the old matrix.

Determinants and elementary operations

Theorem
 Let A be a square matrix.

Determinants and elementary operations

Theorem

Let A be a square matrix.
(1) If we interchange two rows via E_{1} then $\operatorname{det} E_{1} A=-\operatorname{det} A$.

Determinants and elementary operations

Theorem

Let A be a square matrix.
(1) If we interchange two rows via E_{1} then $\operatorname{det} E_{1} A=-\operatorname{det} A$.
(2) If we add a multiple of one row to another row via E_{2}, then $\operatorname{det} E_{2} A=\operatorname{det} A$.

Determinants and elementary operations

Theorem

Let A be a square matrix.
(1) If we interchange two rows via E_{1} then $\operatorname{det} E_{1} A=-\operatorname{det} A$.
(2) If we add a multiple of one row to another row via E_{2}, then $\operatorname{det} E_{2} A=\operatorname{det} A$.
(3) If we scale a row of A by the constant k via E_{3} then $\operatorname{det} E_{3} A=k \operatorname{det} A$.

Determinants and elementary operations

Theorem

Let A be a square matrix.
(1) If we interchange two rows via E_{1} then $\operatorname{det} E_{1} A=-\operatorname{det} A$.
(2) If we add a multiple of one row to another row via E_{2}, then $\operatorname{det} E_{2} A=\operatorname{det} A$.
(3) If we scale a row of A by the constant k via E_{3} then $\operatorname{det} E_{3} A=k \operatorname{det} A$.

Determinants and elementary operations

Theorem

Let A be a square matrix.
(1) If we interchange two rows via E_{1} then $\operatorname{det} E_{1} A=-\operatorname{det} A$.
(2) If we add a multiple of one row to another row via E_{2}, then $\operatorname{det} E_{2} A=\operatorname{det} A$.
(3) If we scale a row of A by the constant k via E_{3} then $\operatorname{det} E_{3} A=k \operatorname{det} A$.

Note that if you scale the entire matrix A by the same constant k, that has the same effect as scaling each of the n rows in order: hence $\operatorname{det}(k A)=k^{n} \operatorname{det} A$.

Row operations and computing determinants

You can compute determinants by reducing to echelon form (upper triangular) and then using the property that the determinant of a triangular matrix is the product of the diagonal elements.

Row operations and computing determinants

You can compute determinants by reducing to echelon form (upper triangular) and then using the property that the determinant of a triangular matrix is the product of the diagonal elements. We will denote $\operatorname{det} A$ by $|A|$ to save time.

Example

Let $A=\left[\begin{array}{cc}100 & 200 \\ 2 & 3\end{array}\right]$.

Row operations and computing determinants

You can compute determinants by reducing to echelon form (upper triangular) and then using the property that the determinant of a triangular matrix is the product of the diagonal elements. We will denote $\operatorname{det} A$ by $|A|$ to save time.

Example

Let $A=\left[\begin{array}{cc}100 & 200 \\ 2 & 3\end{array}\right]$. Then $|A|=100\left|\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right|$

Row operations and computing determinants

You can compute determinants by reducing to echelon form (upper triangular) and then using the property that the determinant of a triangular matrix is the product of the diagonal elements. We will denote $\operatorname{det} A$ by $|A|$ to save time.

Example

Let $A=\left[\begin{array}{cc}100 & 200 \\ 2 & 3\end{array}\right]$. Then $|A|=100\left|\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right|=-100$.

More examples: row reducton and determinants

You can use row reduction to find determinants easily

More examples: row reducton and determinants

You can use row reduction to find determinants easily

$$
A=\left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{array}\right|
$$

More examples: row reducton and determinants

You can use row reduction to find determinants easily

$$
A=\left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right|
$$

More examples: row reducton and determinants

You can use row reduction to find determinants easily

$$
A=\left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right|
$$

You can use row reduction to find determinants easily

$$
\begin{aligned}
& A=\left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right| \\
& =\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right|
\end{aligned}
$$

You can use row reduction to find determinants easily

$$
\begin{aligned}
& A=\left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right| \\
& =\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & 0 & 0 & 0 \\
0 & -3 & -6 & -9
\end{array}\right|
\end{aligned}
$$

You can use row reduction to find determinants easily

$$
\begin{aligned}
& A=\left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right| \\
& =\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & 0 & 0 & 0 \\
0 & -3 & -6 & -9
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & 0 & 0 & 0 \\
0 & -3 & -6 & -9
\end{array}\right|=0
\end{aligned}
$$

You can use row reduction to find determinants easily

$$
\begin{aligned}
& A=\left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right| \\
& =\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & 0 & 0 & 0 \\
0 & -3 & -6 & -9
\end{array}\right|=0\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & 0 & 0 & 0 \\
0 & -3 & -6 & -9
\end{array}\right|=0
\end{aligned}
$$

So $|A|=0$.

Determinants and echelon form

You can compute the determinant of a matrix by row reducing to echelon form.

Determinants and echelon form

You can compute the determinant of a matrix by row reducing to echelon form.

Theorem

Let A be an $n \times n$ matrix and let U be an echelon form computed with exactly r row interchanges.

Determinants and echelon form

You can compute the determinant of a matrix by row reducing to echelon form.

Theorem

Let A be an $n \times n$ matrix and let U be an echelon form computed with exactly r row interchanges. Let $u_{11}, u_{22}, \ldots, u_{n n}$ be the diagonal entries in U.

Determinants and echelon form

You can compute the determinant of a matrix by row reducing to echelon form.

Theorem

Let A be an $n \times n$ matrix and let U be an echelon form computed with exactly r row interchanges. Let $u_{11}, u_{22}, \ldots, u_{n n}$ be the diagonal entries in U. Then $|A|=(-1)^{r} u_{11} u_{22} \ldots u_{n n}$.

Determinants and echelon form

You can compute the determinant of a matrix by row reducing to echelon form.

Theorem

Let A be an $n \times n$ matrix and let U be an echelon form computed with exactly r row interchanges. Let $u_{11}, u_{22}, \ldots, u_{n n}$ be the diagonal entries in U. Then $|A|=(-1)^{r} u_{11} u_{22} \ldots u_{n n}$.

Proof.

None of the row replacement operations change the determinant, so we only have to keep track of the effect of the scaling and interchange operations.

Determinants and echelon form

You can compute the determinant of a matrix by row reducing to echelon form.

Theorem

Let A be an $n \times n$ matrix and let U be an echelon form computed with exactly r row interchanges. Let $u_{11}, u_{22}, \ldots, u_{n n}$ be the diagonal entries in U. Then $|A|=(-1)^{r} u_{11} u_{22} \ldots u_{n n}$.

Proof.

None of the row replacement operations change the determinant, so we only have to keep track of the effect of the scaling and interchange operations. You can put a matrix in echelon form without any scaling.

Determinants and echelon form

You can compute the determinant of a matrix by row reducing to echelon form.

Theorem

Let A be an $n \times n$ matrix and let U be an echelon form computed with exactly r row interchanges. Let $u_{11}, u_{22}, \ldots, u_{n n}$ be the diagonal entries in U. Then $|A|=(-1)^{r} u_{11} u_{22} \ldots u_{n n}$.

Proof.

None of the row replacement operations change the determinant, so we only have to keep track of the effect of the scaling and interchange operations. You can put a matrix in echelon form without any scaling. So the only thing to keep track of is the interchanges. So $|A|=(-1)^{r}|U|$. As the echelon form is upper triangular, its determinant is the product of its diagonal entries $|U|=u_{11} u_{22} \ldots u_{n n}$

Example: determinants and echelon form

Suppose that we have a matrix A and we know that A can be reduced to the echelon form

$$
U=\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 7 & -1 \\
0 & 0 & 3
\end{array}\right]
$$

using some number of replacement operations and one row interchange.

Example: determinants and echelon form

Suppose that we have a matrix A and we know that A can be reduced to the echelon form

$$
U=\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 7 & -1 \\
0 & 0 & 3
\end{array}\right]
$$

using some number of replacement operations and one row interchange. What is $|A|$? We use the previous theorem:

$$
|A|=(-1)|U|=-(1)(7)(3)=-21
$$

Invertibility and determinant

We see that if A is $n \times n$ and U is an echelon form for A which we obtained using replacements and r interchanges then
$|A|=(-1)^{r}|U|=(-1)^{r} u_{11} \ldots u_{n n}$.

Invertibility and determinant

We see that if A is $n \times n$ and U is an echelon form for A which we obtained using replacements and r interchanges then
$|A|=(-1)^{r}|U|=(-1)^{r} u_{11} \ldots u_{n n}$. A has n pivots if and only if all the entries $u_{11}, \ldots, u_{n n}$ are nonzero.

Invertibility and determinant

We see that if A is $n \times n$ and U is an echelon form for A which we obtained using replacements and r interchanges then $|A|=(-1)^{r}|U|=(-1)^{r} u_{11} \ldots u_{n n}$. A has n pivots if and only if all the entries $u_{11}, \ldots, u_{n n}$ are nonzero.

Theorem

Let A be a square matrix. Then A is invertible if and only if $\operatorname{det} A \neq 0$

Invertibility and determinant

We see that if A is $n \times n$ and U is an echelon form for A which we obtained using replacements and r interchanges then $|A|=(-1)^{r}|U|=(-1)^{r} u_{11} \ldots u_{n n}$. A has n pivots if and only if all the entries $u_{11}, \ldots, u_{n n}$ are nonzero.

Theorem

Let A be a square matrix. Then A is invertible if and only if $\operatorname{det} A \neq 0$

Fact

This meshes with the 2×2 case.

Determinants with cofactors and row operations

We can use cofactors and row ops to compute determinants with max speed.

Determinants with cofactors and row operations

We can use cofactors and row ops to compute determinants with max speed.

Example
Compute $\left|\begin{array}{cccc}1 & 2 & 0 & 1 \\ -1 & 3 & 2 & 2 \\ 0 & 5 & 1 & 1 \\ 0 & -5 & 2 & 2\end{array}\right|$. First clean out beneath the first pivot
$|A|$

Determinants with cofactors and row operations

We can use cofactors and row ops to compute determinants with max speed.

Example

Compute $\left|\begin{array}{cccc}1 & 2 & 0 & 1 \\ -1 & 3 & 2 & 2 \\ 0 & 5 & 1 & 1 \\ 0 & -5 & 2 & 2\end{array}\right|$. First clean out beneath the first pivot
$|A|=\left|\begin{array}{cccc}1 & 2 & 0 & 1 \\ 0 & 5 & 2 & 3 \\ 0 & 5 & 1 & 1 \\ 0 & -5 & 2 & 2\end{array}\right|$

Determinants with cofactors and row operations

We can use cofactors and row ops to compute determinants with max speed.

Example

Compute $\left|\begin{array}{cccc}1 & 2 & 0 & 1 \\ -1 & 3 & 2 & 2 \\ 0 & 5 & 1 & 1 \\ 0 & -5 & 2 & 2\end{array}\right|$. First clean out beneath the first pivot
$|A|=\left|\begin{array}{cccc}1 & 2 & 0 & 1 \\ 0 & 5 & 2 & 3 \\ 0 & 5 & 1 & 1 \\ 0 & -5 & 2 & 2\end{array}\right|=1\left|\begin{array}{ccc}5 & 2 & 3 \\ 5 & 1 & 1 \\ -5 & 2 & 2\end{array}\right|$

Determinants with cofactors and row operations

We can use cofactors and row ops to compute determinants with max speed.

Example

Compute $\left|\begin{array}{cccc}1 & 2 & 0 & 1 \\ -1 & 3 & 2 & 2 \\ 0 & 5 & 1 & 1 \\ 0 & -5 & 2 & 2\end{array}\right|$. First clean out beneath the first pivot
$|A|=\left|\begin{array}{cccc}1 & 2 & 0 & 1 \\ 0 & 5 & 2 & 3 \\ 0 & 5 & 1 & 1 \\ 0 & -5 & 2 & 2\end{array}\right|=1\left|\begin{array}{ccc}5 & 2 & 3 \\ 5 & 1 & 1 \\ -5 & 2 & 2\end{array}\right|=\left|\begin{array}{ccc}0 & 4 & 5 \\ 0 & 3 & 3 \\ -5 & 2 & 2\end{array}\right|$

Determinants with cofactors and row operations

We can use cofactors and row ops to compute determinants with max speed.

Example

Compute $\left|\begin{array}{cccc}1 & 2 & 0 & 1 \\ -1 & 3 & 2 & 2 \\ 0 & 5 & 1 & 1 \\ 0 & -5 & 2 & 2\end{array}\right|$. First clean out beneath the first pivot
$|A|=\left|\begin{array}{cccc}1 & 2 & 0 & 1 \\ 0 & 5 & 2 & 3 \\ 0 & 5 & 1 & 1 \\ 0 & -5 & 2 & 2\end{array}\right|=1\left|\begin{array}{ccc}5 & 2 & 3 \\ 5 & 1 & 1 \\ -5 & 2 & 2\end{array}\right|=\left|\begin{array}{ccc}0 & 4 & 5 \\ 0 & 3 & 3 \\ -5 & 2 & 2\end{array}\right|$ Now we
expand along the first column to get
$|A|=(-5)\left|\begin{array}{ll}4 & 5 \\ 3 & 3\end{array}\right|=(-5)(-3)=15$.

Determinants and cofactor expansion

Let's compute $\left|\begin{array}{cccc}-1 & 2 & 3 & 0 \\ 3 & 4 & 3 & 0 \\ 5 & 4 & 6 & 6 \\ 4 & 2 & 4 & 3\end{array}\right|$

Determinants and cofactor expansion

Let's compute $\left|\begin{array}{cccc}-1 & 2 & 3 & 0 \\ 3 & 4 & 3 & 0 \\ 5 & 4 & 6 & 6 \\ 4 & 2 & 4 & 3\end{array}\right|$ We see that the fourth column has
some zeros. We can get more by subtracting 2 times the fourth fow from the third row. Then we take a cofactor expansion

$$
\left|\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
3 & 4 & 3 & 0 \\
5 & 4 & 6 & 6 \\
4 & 2 & 4 & 3
\end{array}\right|
$$

Determinants and cofactor expansion

Let's compute $\left|\begin{array}{cccc}-1 & 2 & 3 & 0 \\ 3 & 4 & 3 & 0 \\ 5 & 4 & 6 & 6 \\ 4 & 2 & 4 & 3\end{array}\right|$ We see that the fourth column has
some zeros. We can get more by subtracting 2 times the fourth fow from the third row. Then we take a cofactor expansion

$$
\left|\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
3 & 4 & 3 & 0 \\
5 & 4 & 6 & 6 \\
4 & 2 & 4 & 3
\end{array}\right|=\left|\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
3 & 4 & 3 & 0 \\
-3 & 0 & -2 & 0 \\
4 & 2 & 4 & 3
\end{array}\right|
$$

Determinants and cofactor expansion

Let's compute $\left|\begin{array}{cccc}-1 & 2 & 3 & 0 \\ 3 & 4 & 3 & 0 \\ 5 & 4 & 6 & 6 \\ 4 & 2 & 4 & 3\end{array}\right|$ We see that the fourth column has some zeros. We can get more by subtracting 2 times the fourth fow from the third row. Then we take a cofactor expansion

$$
\begin{aligned}
& \left|\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
3 & 4 & 3 & 0 \\
5 & 4 & 6 & 6 \\
4 & 2 & 4 & 3
\end{array}\right|=\left|\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
3 & 4 & 3 & 0 \\
-3 & 0 & -2 & 0 \\
4 & 2 & 4 & 3
\end{array}\right| \\
& =3\left|\begin{array}{ccc}
-1 & 2 & 3 \\
3 & 4 & 3 \\
-3 & 0 & -2
\end{array}\right|
\end{aligned}
$$

Determinants and cofactor expansion

Let's compute $\left|\begin{array}{cccc}-1 & 2 & 3 & 0 \\ 3 & 4 & 3 & 0 \\ 5 & 4 & 6 & 6 \\ 4 & 2 & 4 & 3\end{array}\right|$ We see that the fourth column has some zeros. We can get more by subtracting 2 times the fourth fow from the third row. Then we take a cofactor expansion

$$
\left|\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
3 & 4 & 3 & 0 \\
5 & 4 & 6 & 6 \\
4 & 2 & 4 & 3
\end{array}\right|=\left|\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
3 & 4 & 3 & 0 \\
-3 & 0 & -2 & 0 \\
4 & 2 & 4 & 3
\end{array}\right|
$$

$$
=3\left|\begin{array}{ccc}
-1 & 2 & 3 \\
3 & 4 & 3 \\
-3 & 0 & -2
\end{array}\right|=(-3)\left|\begin{array}{cc}
2 & 3 \\
4 & 3
\end{array}\right|-2\left|\begin{array}{cc}
-1 & 2 \\
3 & 4
\end{array}\right|
$$

Determinants and cofactor expansion

Let's compute $\left|\begin{array}{cccc}-1 & 2 & 3 & 0 \\ 3 & 4 & 3 & 0 \\ 5 & 4 & 6 & 6 \\ 4 & 2 & 4 & 3\end{array}\right|$ We see that the fourth column has some zeros. We can get more by subtracting 2 times the fourth fow from the third row. Then we take a cofactor expansion

$$
\left|\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
3 & 4 & 3 & 0 \\
5 & 4 & 6 & 6 \\
4 & 2 & 4 & 3
\end{array}\right|=\left|\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
3 & 4 & 3 & 0 \\
-3 & 0 & -2 & 0 \\
4 & 2 & 4 & 3
\end{array}\right|
$$

$$
=3\left|\begin{array}{ccc}
-1 & 2 & 3 \\
3 & 4 & 3 \\
-3 & 0 & -2
\end{array}\right|=(-3)\left|\begin{array}{cc}
2 & 3 \\
4 & 3
\end{array}\right|-2\left|\begin{array}{cc}
-1 & 2 \\
3 & 4
\end{array}\right|
$$

Determinants and cofactor expansion

Let's compute $\left|\begin{array}{cccc}-1 & 2 & 3 & 0 \\ 3 & 4 & 3 & 0 \\ 5 & 4 & 6 & 6 \\ 4 & 2 & 4 & 3\end{array}\right|$ We see that the fourth column has some zeros. We can get more by subtracting 2 times the fourth fow from the third row. Then we take a cofactor expansion

$$
\begin{aligned}
& \left|\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
3 & 4 & 3 & 0 \\
5 & 4 & 6 & 6 \\
4 & 2 & 4 & 3
\end{array}\right|=\left|\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
3 & 4 & 3 & 0 \\
-3 & 0 & -2 & 0 \\
4 & 2 & 4 & 3
\end{array}\right| \\
& =3\left|\begin{array}{ccc}
-1 & 2 & 3 \\
3 & 4 & 3 \\
-3 & 0 & -2
\end{array}\right|=(-3)\left|\begin{array}{ll}
2 & 3 \\
4 & 3
\end{array}\right|-2\left|\begin{array}{cc}
-1 & 2 \\
3 & 4
\end{array}\right|=3((-3)(-6)+(-2)(-10))
\end{aligned}
$$

Determinants and cofactor expansion

Let's compute $\left|\begin{array}{cccc}-1 & 2 & 3 & 0 \\ 3 & 4 & 3 & 0 \\ 5 & 4 & 6 & 6 \\ 4 & 2 & 4 & 3\end{array}\right|$ We see that the fourth column has some zeros. We can get more by subtracting 2 times the fourth fow from the third row. Then we take a cofactor expansion

$$
\begin{aligned}
& \left|\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
3 & 4 & 3 & 0 \\
5 & 4 & 6 & 6 \\
4 & 2 & 4 & 3
\end{array}\right|=\left|\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
3 & 4 & 3 & 0 \\
-3 & 0 & -2 & 0 \\
4 & 2 & 4 & 3
\end{array}\right| \\
& =3\left|\begin{array}{ccc}
-1 & 2 & 3 \\
3 & 4 & 3 \\
-3 & 0 & -2
\end{array}\right|=(-3)\left|\begin{array}{ll}
2 & 3 \\
4 & 3
\end{array}\right|-2\left|\begin{array}{cc}
-1 & 2 \\
3 & 4
\end{array}\right|=3((-3)(-6)+(-2)(-10))
\end{aligned}
$$

Determinants and transpose

Theorem

If A is a square matrix then $\operatorname{det} A=\operatorname{det} A^{T}$. That is, a matrix and its transpose have the same determinant.

Proof.

You just flip the cofactor expansions: if you compute the determinant of A by cofactor expansion along row j, compute the determinant of A^{T} along its j th column, and vice versa.

Determinants and transpose

Theorem
 If A is a square matrix then $\operatorname{det} A=\operatorname{det} A^{T}$. That is, a matrix and its transpose have the same determinant.

Proof.

You just flip the cofactor expansions: if you compute the determinant of A by cofactor expansion along row j, compute the determinant of A^{T} along its j th column, and vice versa. Since you take determinants of transposes of smaller matrices.

Determinants and transpose

Theorem

If A is a square matrix then $\operatorname{det} A=\operatorname{det} A^{T}$. That is, a matrix and its transpose have the same determinant.

Proof.

You just flip the cofactor expansions: if you compute the determinant of A by cofactor expansion along row j, compute the determinant of A^{T} along its j th column, and vice versa. Since you take determinants of transposes of smaller matrices.

Any column operation (interchange columns, replace column, scale column) has the same effect on the determinant as the corresponding row operation.

Determinants and transpose

Theorem

If A is a square matrix then $\operatorname{det} A=\operatorname{det} A^{T}$. That is, a matrix and its transpose have the same determinant.

Proof.

You just flip the cofactor expansions: if you compute the determinant of A by cofactor expansion along row j, compute the determinant of A^{T} along its j th column, and vice versa. Since you take determinants of transposes of smaller matrices.

Any column operation (interchange columns, replace column, scale column) has the same effect on the determinant as the corresponding row operation. So replacing columns does not change the determinant, interchanging two columns multiplies the determinant by -1 , scaling a column scales the determinant.

Determinants multiply

A really important property of determinants is that they multiply with matrix multiplication.

Determinants multiply

A really important property of determinants is that they multiply with matrix multiplication.

Theorem
Let A and B be $n \times n$.

Determinants multiply

A really important property of determinants is that they multiply with matrix multiplication.

Theorem

Let A and B be $n \times n$. Then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Determinants multiply

A really important property of determinants is that they multiply with matrix multiplication.

Theorem

Let A and B be $n \times n$. Then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Example

We have

$$
\underbrace{\left[\begin{array}{ll}
1 & 2 \\
7 & 5
\end{array}\right]}_{\text {det }=-9} \underbrace{\left[\begin{array}{cc}
3 & 0 \\
-1 & -1
\end{array}\right]}_{\text {det }=-3}=\underbrace{\left[\begin{array}{cc}
1 & -2 \\
16 & -5
\end{array}\right]}_{\text {det }=27}
$$

Non-linearity of the determinant

It is not the case that $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$. For example

$$
\underbrace{\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]}_{\text {det }=-1}+\underbrace{\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]}_{\text {det }=-1}=\underbrace{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]}_{\text {det }=0}
$$

Non-linearity of the determinant

It is not the case that $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$. For example

$$
\underbrace{\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]}_{\text {det }=-1}+\underbrace{\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]}_{\text {det }=-1}=\underbrace{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]}_{\text {det }=0}
$$

Also it is not true that $\operatorname{det} c A=c \operatorname{det} A$ for all matrices A and scalars c.

Non-linearity of the determinant

It is not the case that $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$. For example

$$
\underbrace{\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]}_{\text {det }=-1}+\underbrace{\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]}_{\text {det }=-1}=\underbrace{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]}_{\text {det }=0}
$$

Also it is not true that $\operatorname{det} c A=c \operatorname{det} A$ for all matrices A and scalars c. Instead $\operatorname{det} c A=c^{n} \operatorname{det} A$.

Cramer's rule

You can use determinants to solve systems $A \mathbf{x}=\mathbf{b}$ for invertible A, without having to find the inverse of A.

Cramer's rule

You can use determinants to solve systems $A \mathbf{x}=\mathbf{b}$ for invertible A, without having to find the inverse of A.

Cramer's rule

You can use determinants to solve systems $A \mathbf{x}=\mathbf{b}$ for invertible A, without having to find the inverse of A. Here if A is an $n \times n$ matrix and \mathbf{b} is in \mathbb{R}^{n}, then for any $i=1, \ldots, n$ we let $A_{i}(\mathbf{b})$ be the $n \times n$ matrix obtained by replacing the i th column of A with \mathbf{b}

Cramer's rule

You can use determinants to solve systems $A \mathbf{x}=\mathbf{b}$ for invertible A, without having to find the inverse of A. Here if A is an $n \times n$ matrix and \mathbf{b} is in \mathbb{R}^{n}, then for any $i=1, \ldots, n$ we let $A_{i}(\mathbf{b})$ be the $n \times n$ matrix obtained by replacing the i th column of A with \mathbf{b}

Theorem (Cramer's rule)

Let A be an invertible $n \times n$ matrix. For any $\mathbf{b} \in \mathbb{R}^{n}$, the unique solution $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ of $A \mathbf{x}=\mathbf{b}$ has entries given by

$$
x_{i}=\frac{\operatorname{det} A_{i}(\mathbf{b}}{\operatorname{det} A}
$$

Solving a system with Cramer's rule

$$
\begin{aligned}
& \text { Example } \\
& \text { Let } A=\left[\begin{array}{cc}
1 & 8 \\
2 & 17
\end{array}\right] \text { (which has determinant } 1 \text {) and } \mathbf{b}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
\end{aligned}
$$

Solving a system with Cramer's rule

Example

Let $A=\left[\begin{array}{cc}1 & 8 \\ 2 & 17\end{array}\right]$ (which has determinant 1) and $\mathbf{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. To find the solution to $A \mathbf{x}=\mathbf{b}$ we compute

$$
x_{1}=\frac{\operatorname{det}\left[\begin{array}{cc}
1 & 8 \\
1 & 17
\end{array}\right]}{1}
$$

Solving a system with Cramer's rule

Example

Let $A=\left[\begin{array}{cc}1 & 8 \\ 2 & 17\end{array}\right]$ (which has determinant 1) and $\mathbf{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. To find the solution to $A \mathbf{x}=\mathbf{b}$ we compute

$$
x_{1}=\frac{\operatorname{det}\left[\begin{array}{cc}
1 & 8 \\
1 & 17
\end{array}\right]}{1}=9
$$

Solving a system with Cramer's rule

Example

Let $A=\left[\begin{array}{cc}1 & 8 \\ 2 & 17\end{array}\right]$ (which has determinant 1) and $\mathbf{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. To find the solution to $A \mathbf{x}=\mathbf{b}$ we compute

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det}\left[\begin{array}{cc}
1 & 8 \\
1 & 17
\end{array}\right]}{1}=9 \\
& x_{2}=\frac{\operatorname{det}\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]}{1}
\end{aligned}
$$

Solving a system with Cramer's rule

Example

Let $A=\left[\begin{array}{cc}1 & 8 \\ 2 & 17\end{array}\right]$ (which has determinant 1) and $\mathbf{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. To find the solution to $A \mathbf{x}=\mathbf{b}$ we compute

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det}\left[\begin{array}{cc}
1 & 8 \\
1 & 17
\end{array}\right]}{1}=9 \\
& x_{2}=\frac{\operatorname{det}\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]}{1}=-1
\end{aligned}
$$

Solving a system with Cramer's rule

Example

Let $A=\left[\begin{array}{cc}1 & 8 \\ 2 & 17\end{array}\right]$ (which has determinant 1) and $\mathbf{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. To find the solution to $A \mathbf{x}=\mathbf{b}$ we compute

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det}\left[\begin{array}{cc}
1 & 8 \\
1 & 17
\end{array}\right]}{1}=9 \\
& x_{2}=\frac{\operatorname{det}\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]}{1}=-1
\end{aligned}
$$

Thus the unique solution is $\mathbf{x}=\left[\begin{array}{c}9 \\ -1\end{array}\right]$.

Computng areas with determinants

When you are studying geometry you study parallelograms in \mathbb{R}^{2} and parallelepipeds in \mathbb{R}^{3}. A pair of vectors determines a parallelogram and a triple of vectors determines a parallelepiped.

Computng areas with determinants

When you are studying geometry you study parallelograms in \mathbb{R}^{2} and parallelepipeds in \mathbb{R}^{3}. A pair of vectors determines a parallelogram and a triple of vectors determines a parallelepiped.

Theorem

Let A be 2×2. If we treat the columns of A as the vertices in a paralleogram that are adjacent to the origin, then the area of that parallelogram is $|\operatorname{det} A|$.

Computng areas with determinants

When you are studying geometry you study parallelograms in \mathbb{R}^{2} and parallelepipeds in \mathbb{R}^{3}. A pair of vectors determines a parallelogram and a triple of vectors determines a parallelepiped.

Theorem

Let A be 2×2. If we treat the columns of A as the vertices in a paralleogram that are adjacent to the origin, then the area of that parallelogram is $|\operatorname{det} A|$. If A is 3×3 and we treat the columns of A as the vertices in a parallelepiped that are adjacent the origin, then the area of that parallelepiped is $|\operatorname{det} A|$.

Examples of areas of parallelograms

Example

Let $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$. Then the columns of A define a parallelogram with vertices at $(0,0),(1,2),(1,0),(2,2)$.

Examples of areas of parallelograms

Example

Let $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$. Then the columns of A define a parallelogram with vertices at $(0,0),(1,2),(1,0),(2,2)$. The area of this parallelogram is $|\operatorname{det} A|=|-2|=2$

Examples of areas of parallelograms

Example

Let $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$. Then the columns of A define a parallelogram with vertices at $(0,0),(1,2),(1,0),(2,2)$. The area of this parallelogram is $|\operatorname{det} A|=|-2|=2$ (be careful not to confuse the determinant bars we sometimes use with the bars for absolute value).

Examples of volume of parallelepipeds

Example

Let $A=\left[\begin{array}{lll}1 & 3 & 1 \\ 3 & 1 & 1 \\ 0 & 0 & 3\end{array}\right]$.

Examples of volume of parallelepipeds

Example

Let $A=\left[\begin{array}{lll}1 & 3 & 1 \\ 3 & 1 & 1 \\ 0 & 0 & 3\end{array}\right]$. The columns of A define a parallelepiped with vertices $(0,0,0),(1,3,0),(3,1,0),(4,4,0),(1,1,3),(2,4,3),(4,2,3),(5,5,3)$.

Examples of volume of parallelepipeds

Example

Let $A=\left[\begin{array}{lll}1 & 3 & 1 \\ 3 & 1 & 1 \\ 0 & 0 & 3\end{array}\right]$. The columns of A define a parallelepiped
with vertices
$(0,0,0),(1,3,0),(3,1,0),(4,4,0),(1,1,3),(2,4,3),(4,2,3),(5,5,3)$.
The volume of this parallelepiped is

$$
|\operatorname{det} A|=24
$$

