Lecture 11:LU factorizations

Danny W. Crytser

April 14, 2014

(1) We are going to discuss LU factorizations and how they can be used to solve multiple systems of equations.
(2) We are going to show how to find LU factorizations for matrices.
(3) We are going to start discussing determinants.

When you are learning about integers you often talk about factorization

$$
n=p q
$$

(e.g. $10=5 \cdot 2$)

When you are learning about integers you often talk about factorization

$$
n=p q
$$

(e.g. $10=5 \cdot 2$) The same is the case for matrix algebra: we often will take a matrix A and factorize it

$$
A=X Y
$$

for some matrices X and Y with nice properties.

Why factorize?

A lot of the time we want to solve a bunch of systems

$$
A \mathbf{x}_{1}=\mathbf{b}_{1} \quad A \mathbf{x}_{2}=\mathbf{b}_{2} \quad \ldots
$$

where the constant vectors vary but the coefficient matrix stays the same

Why factorize?

A lot of the time we want to solve a bunch of systems

$$
A \mathbf{x}_{1}=\mathbf{b}_{1} \quad A \mathbf{x}_{2}=\mathbf{b}_{2} \quad \ldots
$$

where the constant vectors vary but the coefficient matrix stays the same (production in different years with same facilities, etc.)

Why factorize?

A lot of the time we want to solve a bunch of systems

$$
A \mathbf{x}_{1}=\mathbf{b}_{1} \quad A \mathbf{x}_{2}=\mathbf{b}_{2} \quad \ldots
$$

where the constant vectors vary but the coefficient matrix stays the same (production in different years with same facilities, etc.)
You can speed up your solving with a factorization $A=L U$.

Lower and upper triangular matrices

Just as you factor an integer into prime numbers, you choose the kind of matrices into which you factor a matrix.

Definition

The diagonal entries in an $m \times n$ matrix $A=\left[a_{i j}\right]$ are $a_{i i}$.

Lower and upper triangular matrices

Just as you factor an integer into prime numbers, you choose the kind of matrices into which you factor a matrix.

Definition

The diagonal entries in an $m \times n$ matrix $A=\left[a_{i j}\right]$ are $a_{i i}$. A lower triangular matrix is a matrix whose entries above the diagonal are zero.

Lower and upper triangular matrices

Just as you factor an integer into prime numbers, you choose the kind of matrices into which you factor a matrix.

Definition

The diagonal entries in an $m \times n$ matrix $A=\left[a_{i j}\right]$ are $a_{i i}$. A lower triangular matrix is a matrix whose entries above the diagonal are zero. A unit lower triangular matrix is a matrix with 1 s on the diagonal and zeros above the diagonal.

Lower and upper triangular matrices

Just as you factor an integer into prime numbers, you choose the kind of matrices into which you factor a matrix.

Definition

The diagonal entries in an $m \times n$ matrix $A=\left[a_{i j}\right]$ are $a_{i i}$. A lower triangular matrix is a matrix whose entries above the diagonal are zero. A unit lower triangular matrix is a matrix with 1 s on the diagonal and zeros above the diagonal. An upper triangular matrix is a matrix whose entries below the diagonal are zero.

Lower and upper triangular matrices

Just as you factor an integer into prime numbers, you choose the kind of matrices into which you factor a matrix.

Definition

The diagonal entries in an $m \times n$ matrix $A=\left[a_{i j}\right]$ are $a_{i i}$. A lower triangular matrix is a matrix whose entries above the diagonal are zero. A unit lower triangular matrix is a matrix with 1 s on the diagonal and zeros above the diagonal. An upper triangular matrix is a matrix whose entries below the diagonal are zero.

Remark

A matrix which is both upper and lower triangular can only have nonzero entries its diagonal, so it is a diagonal matrices.

Examples of triangular matrices

Example

The matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ is upper triangular.

Examples of triangular matrices

Example

The matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ is upper triangular. The matrix
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 2 & 0 \\ 7 & 8 & -1\end{array}\right]$
is lower triangular (all the entries above the
diagonal are zero) but not unit lower triangular.

Examples of triangular matrices

Example

The matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ is upper triangular. The matrix $\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 2 & 0 \\ 7 & 8 & -1\end{array}\right]$ is lower triangular (all the entries above the diagonal are zero) but not unit lower triangular. The matrix
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 3 & 1 & 0 \\ -1 & -7 & 2 & 1\end{array}\right]$ is unit lower triangular.

LU factorization

An LU factorization of an $m \times n$ matrix A looks like

$$
A=\underbrace{L}_{m \times m} \underbrace{U}_{m \times n}
$$

where L is unit Lower triangular and U is Upper triangular.

LU factorization

An LU factorization of an $m \times n$ matrix A looks like

$$
A=\underbrace{L}_{m \times m} \underbrace{U}_{m \times n}
$$

where L is unit Lower triangular and U is Upper triangular.
Example
Let $A=\left[\begin{array}{lll}2 & 2 & 0 \\ 6 & 7 & 2\end{array}\right]$.

LU factorization

An LU factorization of an $m \times n$ matrix A looks like

$$
A=\underbrace{L}_{m \times m} \underbrace{U}_{m \times n}
$$

where L is unit Lower triangular and U is Upper triangular.
Example
Let $A=\left[\begin{array}{lll}2 & 2 & 0 \\ 6 & 7 & 2\end{array}\right]$. Then we can write

$$
A=\left[\begin{array}{lll}
2 & 2 & 0 \\
6 & 7 & 2
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]}_{L} \underbrace{\left[\begin{array}{lll}
2 & 2 & 0 \\
0 & 1 & 2
\end{array}\right]}_{U} .
$$

LU factorization

An LU factorization of an $m \times n$ matrix A looks like

$$
A=\underbrace{L}_{m \times m} \underbrace{U}_{m \times n}
$$

where L is unit Lower triangular and U is Upper triangular.
Example
Let $A=\left[\begin{array}{lll}2 & 2 & 0 \\ 6 & 7 & 2\end{array}\right]$. Then we can write

$$
A=\left[\begin{array}{lll}
2 & 2 & 0 \\
6 & 7 & 2
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]}_{L} \underbrace{\left[\begin{array}{lll}
2 & 2 & 0 \\
0 & 1 & 2
\end{array}\right]}_{U}
$$

Note that L is square and U in this case is not square.

What is an LU factorization good for?

LU factorizations are useful for solving systems via the following two step process.

Fact

Suppose you have $A=L U$, where L is unit lower triangular and U is upper triangular. To solve

$$
A \mathbf{x}=\mathbf{b}
$$

do the following
(1) solve $L \mathbf{y}=\mathbf{b}$

What is an LU factorization good for?

LU factorizations are useful for solving systems via the following two step process.

Fact

Suppose you have $A=L U$, where L is unit lower triangular and U is upper triangular. To solve

$$
A \mathbf{x}=\mathbf{b}
$$

do the following
(1) solve $L \mathbf{y}=\mathbf{b}$
(2) solve $U \mathbf{x}=\mathbf{y}$

What is an LU factorization good for?

LU factorizations are useful for solving systems via the following two step process.

Fact

Suppose you have $A=L U$, where L is unit lower triangular and U is upper triangular. To solve

$$
A \mathbf{x}=\mathbf{b}
$$

do the following
(1) solve $L \mathbf{y}=\mathbf{b}$
(2) solve $U \mathbf{x}=\mathbf{y}$

Then $A \mathbf{x}=L U \mathbf{x}=L(U \mathbf{x})=L \mathbf{y}=\mathbf{b}$.

What is an LU factorization good for?

LU factorizations are useful for solving systems via the following two step process.

Fact

Suppose you have $A=L U$, where L is unit lower triangular and U is upper triangular. To solve

$$
A \mathbf{x}=\mathbf{b}
$$

do the following
(1) solve $L \mathbf{y}=\mathbf{b}$
(2) solve $U \mathbf{x}=\mathbf{y}$

Then $A \mathbf{x}=L U \mathbf{x}=L(U \mathbf{x})=L \mathbf{y}=\mathbf{b}$.

Example of solving with LU

Let A be the matrix

$$
\left[\begin{array}{cccc}
3 & -7 & -2 & 2 \\
-3 & 5 & 1 & 0 \\
6 & -4 & 0 & -5 \\
-9 & 5 & -5 & 12
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
2 & -5 & 1 & 0 \\
-3 & 8 & 3 & 1
\end{array}\right]}_{L} \underbrace{\left[\begin{array}{cccc}
3 & -7 & -2 & 2 \\
0 & -2 & -1 & 2 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right]}_{U}
$$

Example of solving with LU

Let A be the matrix

$$
\left[\begin{array}{cccc}
3 & -7 & -2 & 2 \\
-3 & 5 & 1 & 0 \\
6 & -4 & 0 & -5 \\
-9 & 5 & -5 & 12
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
2 & -5 & 1 & 0 \\
-3 & 8 & 3 & 1
\end{array}\right]}_{L} \underbrace{\left[\begin{array}{cccc}
3 & -7 & -2 & 2 \\
0 & -2 & -1 & 2 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right]}_{U}
$$

Solve $A \mathbf{x}=\left[\begin{array}{c}-9 \\ 5 \\ 7 \\ 1\end{array}\right]$

Example of solving with LU

Let A be the matrix

$$
\left[\begin{array}{cccc}
3 & -7 & -2 & 2 \\
-3 & 5 & 1 & 0 \\
6 & -4 & 0 & -5 \\
-9 & 5 & -5 & 12
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
2 & -5 & 1 & 0 \\
-3 & 8 & 3 & 1
\end{array}\right]}_{L} \underbrace{\left[\begin{array}{cccc}
3 & -7 & -2 & 2 \\
0 & -2 & -1 & 2 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right]}_{U}
$$

Solve $A \mathbf{x}=\left[\begin{array}{c}-9 \\ 5 \\ 7 \\ 1\end{array}\right]$ First solve $L \mathbf{y}=\mathbf{b}$

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -9 \\
-1 & 1 & 0 & 0 & 5 \\
2 & -5 & 1 & 0 & 7 \\
-3 & 8 & 3 & 1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -9 \\
-1 & 1 & 0 & 0 & 5 \\
2 & -5 & 1 & 0 & 7 \\
-3 & 8 & 3 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -9 \\
0 & 1 & 0 & 0 & -4 \\
0 & 0 & 1 & 0 & 5 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]} \\
& \text { So the solution to } L \mathbf{y}=\mathbf{b} \text { is } \mathbf{y}=\left[\begin{array}{c}
-9 \\
-4 \\
5 \\
1
\end{array}\right] .
\end{aligned}
$$

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -9 \\
-1 & 1 & 0 & 0 & 5 \\
2 & -5 & 1 & 0 & 7 \\
-3 & 8 & 3 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -9 \\
0 & 1 & 0 & 0 & -4 \\
0 & 0 & 1 & 0 & 5 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

So the solution to $L \mathbf{y}=\mathbf{b}$ is $\mathbf{y}=\left[\begin{array}{c}-9 \\ -4 \\ 5 \\ 1\end{array}\right]$. Now we find the
solution by solving $U \mathbf{x}=\mathbf{y}$, where $U=\left[\begin{array}{cccc}3 & -7 & -2 & 2 \\ 0 & -2 & -1 & 2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1\end{array}\right]$.

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -9 \\
-1 & 1 & 0 & 0 & 5 \\
2 & -5 & 1 & 0 & 7 \\
-3 & 8 & 3 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -9 \\
0 & 1 & 0 & 0 & -4 \\
0 & 0 & 1 & 0 & 5 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

So the solution to $L \mathbf{y}=\mathbf{b}$ is $\mathbf{y}=\left[\begin{array}{c}-9 \\ -4 \\ 5 \\ 1\end{array}\right]$. Now we find the
solution by solving $U \mathbf{x}=\mathbf{y}$, where $U=\left[\begin{array}{cccc}3 & -7 & -2 & 2 \\ 0 & -2 & -1 & 2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1\end{array}\right]$.

$$
\left[\begin{array}{ccccc}
3 & -7 & -2 & 2 & -9 \\
0 & -2 & -1 & 2 & -4 \\
0 & 0 & -1 & 1 & 5 \\
0 & 0 & 0 & -1 & 1
\end{array}\right] \text { this is the augmented matrix }
$$

Solving ctd ctd

$$
\left[\begin{array}{ccccc}
3 & -7 & -2 & 2 & -9 \\
0 & -2 & -1 & 2 & -4 \\
0 & 0 & -1 & 1 & 5 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

Solving ctd ctd

$$
\left[\begin{array}{ccccc}
3 & -7 & -2 & 2 & -9 \\
0 & -2 & -1 & 2 & -4 \\
0 & 0 & -1 & 1 & 5 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

Row reduction of this augmented matrix yields

$$
\left[\begin{array}{ccccc}
3 & -7 & -2 & 2 & -9 \\
0 & -2 & -1 & 2 & -4 \\
0 & 0 & -1 & 1 & 5 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

Solving ctd ctd

$$
\left[\begin{array}{ccccc}
3 & -7 & -2 & 2 & -9 \\
0 & -2 & -1 & 2 & -4 \\
0 & 0 & -1 & 1 & 5 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

Row reduction of this augmented matrix yields

$$
\left[\begin{array}{ccccc}
3 & -7 & -2 & 2 & -9 \\
0 & -2 & -1 & 2 & -4 \\
0 & 0 & -1 & 1 & 5 \\
0 & 0 & 0 & -1 & 1
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 & 4 \\
0 & 0 & 1 & 0 & -6 \\
0 & 0 & 0 & 1 & -1
\end{array}\right]
$$

Solving ctd ctd

$$
\left[\begin{array}{ccccc}
3 & -7 & -2 & 2 & -9 \\
0 & -2 & -1 & 2 & -4 \\
0 & 0 & -1 & 1 & 5 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

Row reduction of this augmented matrix yields

$$
\left[\begin{array}{ccccc}
3 & -7 & -2 & 2 & -9 \\
0 & -2 & -1 & 2 & -4 \\
0 & 0 & -1 & 1 & 5 \\
0 & 0 & 0 & -1 & 1
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 & 4 \\
0 & 0 & 1 & 0 & -6 \\
0 & 0 & 0 & 1 & -1
\end{array}\right]
$$

So the solution is $\mathbf{x}=\left[\begin{array}{c}3 \\ 4 \\ -6 \\ -1\end{array}\right]$.

Why did we use $A=L U$?

You can check that doing the row reductions of $\angle \mathbf{y}=\mathbf{b}$ and $U \mathbf{x}=\mathbf{y}$ takes a total of 28 operations.

Why did we use $A=L U$?

You can check that doing the row reductions of $L \mathbf{y}=\mathbf{b}$ and $U \mathbf{x}=\mathbf{y}$ takes a total of 28 operations. Just solving $A \mathbf{x}=\mathbf{b}$ using row reduction requires 62 (more than twice as many).

Why did we use $A=L U$?

You can check that doing the row reductions of $L \mathbf{y}=\mathbf{b}$ and $U \mathbf{x}=\mathbf{y}$ takes a total of 28 operations. Just solving $A \mathbf{x}=\mathbf{b}$ using row reduction requires 62 (more than twice as many). So solving with the LU factorization saves us a lot of time.

Finding the factorization $A=L U$

All this is great but it doesn't answer the question: how do you find the factorization $A=L U$?

Finding the factorization $A=L U$

All this is great but it doesn't answer the question: how do you find the factorization $A=L U$? It's actually built into row reduction!

Finding the factorization $A=L U$

All this is great but it doesn't answer the question: how do you find the factorization $A=L U$? It's actually built into row reduction!

Fact

If A is an $m \times n$ matrix that you can reduce without swapping rows, the following steps factor $A=L U$:
(1) First column of $L=$ First column of A scaled to have top entry 1
(2) Reduce down the first column of A
(3) Look at the next pivot column, at and below the pivot: that is the next column of L as soon as you divide by the pivot.
(3) repeat
(5) If you run out of pivot columns, just use columns from the identity matrix to fill out L.

Example: factorization

Let's get the LU factorization for

$$
A=\left[\begin{array}{ll}
1 & 5 \\
2 & 6 \\
3 & 7 \\
4 & 8
\end{array}\right]
$$

L will be 4×4 and U will be 4×2. The first column of L is the first column of A (we don't need to scale it because the first entry is 1).

$$
L=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & * & 0 & 0 \\
3 & * & * & 0 \\
4 & * & * & *
\end{array}\right]
$$

Example: ctd.

To get the next column of L we keep reducing

$$
\left[\begin{array}{ll}
1 & 5 \\
2 & 6 \\
3 & 7 \\
4 & 8
\end{array}\right] \sim\left[\begin{array}{cc}
1 & 5 \\
0 & -4 \\
0 & -8 \\
0 & -12
\end{array}\right]
$$

The new pivot is -4 . The column at and below the pivot is

$$
\begin{aligned}
& {\left[\begin{array}{c}
-4 \\
-8 \\
-12
\end{array}\right] \text { which we scale by }-\frac{1}{4} \text { to obtain the second column of } L \text { : }} \\
& {\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]}
\end{aligned}
$$

Example: ctd. ctd.

Now we have

$$
L=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
3 & 2 & * & 0 \\
4 & 3 & * & *
\end{array}\right]
$$

Example: ctd. ctd.

Now we have

$$
L=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
3 & 2 & * & 0 \\
4 & 3 & * & *
\end{array}\right]
$$

Now there are no more pivots left in A. The rest of the stars we fill up with columns from the appropriate identity matrix.

Example: ctd. ctd.

Now we have

$$
L=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
3 & 2 & * & 0 \\
4 & 3 & * & *
\end{array}\right]
$$

Now there are no more pivots left in A. The rest of the stars we fill up with columns from the appropriate identity matrix.

$$
L=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
3 & 2 & 1 & 0 \\
4 & 3 & 0 & 1
\end{array}\right]
$$

Example: ctd. ctd.

Now we have

$$
L=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
3 & 2 & * & 0 \\
4 & 3 & * & *
\end{array}\right]
$$

Now there are no more pivots left in A. The rest of the stars we fill up with columns from the appropriate identity matrix.

$$
L=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
3 & 2 & 1 & 0 \\
4 & 3 & 0 & 1
\end{array}\right]
$$

The matrix U is just the echelon form from the previous slide

$$
U=\left[\begin{array}{cc}
1 & 5 \\
0 & -4 \\
0 & -8 \\
0 & -12
\end{array}\right]
$$

Determinants

Remember the theorem

Theorem

Let A be a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then A is invertible if and only if $a d-b c \neq 0$, and $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.

Determinants

Remember the theorem

Theorem

Let A be a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then A is invertible if and only if $a d-b c \neq 0$, and $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.

We called $a d-b c$ the determinant of $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

Determinants

Remember the theorem

Theorem

Let A be a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then A is invertible if and only if $a d-b c \neq 0$, and $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.

We called $a d-b c$ the determinant of $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. It determines when a 2×2 matrix is invertible.

Let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$. Let's row reduce:
$\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{133}\end{array}\right] \sim\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\ 0 & a_{11} a_{32}-a_{12} a_{31} & a_{11} a_{33}-a_{13} a_{31}\end{array}\right]$
Multiply row 3 by $a_{11} a_{22}-a_{12} a_{21}$ and then add $-\left(a_{11} a_{32}-a_{12} a_{31}\right)$ times row 2.

Determinants for 3×3 matrices

We row reduced

$$
A \sim\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & 0 & a_{11} \Delta
\end{array}\right]
$$

where

Determinants for 3×3 matrices

We row reduced

$$
A \sim\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & 0 & a_{11} \Delta
\end{array}\right]
$$

where
$\Delta=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}$

Determinants for 3×3 matrices

We row reduced

$$
A \sim\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & 0 & a_{11} \Delta
\end{array}\right]
$$

where
$\Delta=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}$
We call Δ the determinant of A, denoted $\operatorname{det} A$.

Determinants for 3×3 matrices

We row reduced

$$
A \sim\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & 0 & a_{11} \Delta
\end{array}\right]
$$

where
$\Delta=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}$
We call Δ the determinant of A, denoted $\operatorname{det} A$. In order for A to be invertible, it must have a pivot in every column. So $\operatorname{det} A$ must be nonzero if A is to be invertible. We shall see that the converse is true: A is invertible if the determinant of A is nonzero.

We can write $\operatorname{det} A=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}$ as
$\operatorname{det} A=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

We can write $\operatorname{det} A=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}$ as
$\operatorname{det} A=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$
We can write

$$
\operatorname{det} A=a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+a_{13} \operatorname{det} A_{13}
$$

We can write $\operatorname{det} A=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}$
as
$\operatorname{det} A=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$
We can write

$$
\operatorname{det} A=a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+a_{13} \operatorname{det} A_{13}
$$

where $A_{i j}$ is the matrix you get when you delete row i and column j from A.

Definition of the determinant

The previous formula motivates the definition of the determinant for an $n \times n$ matrix.

Definition of the determinant

The previous formula motivates the definition of the determinant for an $n \times n$ matrix. This definition is recursive in the sense that it defines the determinant of A in terms of the determinants of a number of smaller matrices contained in A.

Definition of the determinant

The previous formula motivates the definition of the determinant for an $n \times n$ matrix. This definition is recursive in the sense that it defines the determinant of A in terms of the determinants of a number of smaller matrices contained in A.

Definition

For $n \geq 2$, the determinant of an $n \times n$ matrix $A=\left[a_{i j}\right]$ is the sum of n terms of the form $\pm a_{1 j} \operatorname{det} A_{1 j}$ with plus and minus signs alternating, where the entries $a_{11}, a_{12}, \ldots, a_{n 1}$ are the first row of A.

Definition of the determinant

The previous formula motivates the definition of the determinant for an $n \times n$ matrix. This definition is recursive in the sense that it defines the determinant of A in terms of the determinants of a number of smaller matrices contained in A.

Definition

For $n \geq 2$, the determinant of an $n \times n$ matrix $A=\left[a_{i j}\right]$ is the sum of n terms of the form $\pm a_{1 j} \operatorname{det} A_{1 j}$ with plus and minus signs alternating, where the entries $a_{11}, a_{12}, \ldots, a_{n 1}$ are the first row of A. That is,

$$
\begin{align*}
\operatorname{det} A & =a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\ldots+(-1)^{1+n} a_{1 n} \operatorname{det} A_{1 n} \tag{1}\\
& =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{1 j} \tag{2}
\end{align*}
$$

Definition of the determinant

The previous formula motivates the definition of the determinant for an $n \times n$ matrix. This definition is recursive in the sense that it defines the determinant of A in terms of the determinants of a number of smaller matrices contained in A.

Definition

For $n \geq 2$, the determinant of an $n \times n$ matrix $A=\left[a_{i j}\right]$ is the sum of n terms of the form $\pm a_{1 j} \operatorname{det} A_{1 j}$ with plus and minus signs alternating, where the entries $a_{11}, a_{12}, \ldots, a_{n 1}$ are the first row of A. That is,

$$
\begin{align*}
\operatorname{det} A & =a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\ldots+(-1)^{1+n} a_{1 n} \operatorname{det} A_{1 n} \tag{1}\\
& =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{1 j} \tag{2}
\end{align*}
$$

We will shortly see more convenient ways of computing the determinant than "across the first row" as in the definition.

Computing determinants

Lets compute the determinant of

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
5 & -1 & 2 \\
0 & 7 & 3
\end{array}\right]
$$

Computing determinants

Lets compute the determinant of

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
5 & -1 & 2 \\
0 & 7 & 3
\end{array}\right]
$$

The definition gives
$\operatorname{det} A=$

Computing determinants

Lets compute the determinant of

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
5 & -1 & 2 \\
0 & 7 & 3
\end{array}\right]
$$

The definition gives

$$
\operatorname{det} A=(1) \operatorname{det}\left[\begin{array}{cc}
-1 & 2 \\
7 & 3
\end{array}\right]
$$

Computing determinants

Lets compute the determinant of

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
5 & -1 & 2 \\
0 & 7 & 3
\end{array}\right]
$$

The definition gives

$$
\operatorname{det} A=(1) \operatorname{det}\left[\begin{array}{cc}
-1 & 2 \\
7 & 3
\end{array}\right]+(-1)(1) \operatorname{det}\left[\begin{array}{ll}
5 & 2 \\
0 & 3
\end{array}\right]
$$

Computing determinants

Lets compute the determinant of

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
5 & -1 & 2 \\
0 & 7 & 3
\end{array}\right]
$$

The definition gives

$$
\operatorname{det} A=(1) \operatorname{det}\left[\begin{array}{cc}
-1 & 2 \\
7 & 3
\end{array}\right]+(-1)(1) \operatorname{det}\left[\begin{array}{ll}
5 & 2 \\
0 & 3
\end{array}\right]+(2) \operatorname{det}\left[\begin{array}{cc}
5 & -1 \\
0 & 7
\end{array}\right]
$$

Computing determinants

Lets compute the determinant of

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
5 & -1 & 2 \\
0 & 7 & 3
\end{array}\right]
$$

The definition gives

$$
\operatorname{det} A=(1) \operatorname{det}\left[\begin{array}{cc}
-1 & 2 \\
7 & 3
\end{array}\right]+(-1)(1) \operatorname{det}\left[\begin{array}{ll}
5 & 2 \\
0 & 3
\end{array}\right]+(2) \operatorname{det}\left[\begin{array}{cc}
5 & -1 \\
0 & 7
\end{array}\right]
$$

Computing determinants

Lets compute the determinant of

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
5 & -1 & 2 \\
0 & 7 & 3
\end{array}\right]
$$

The definition gives

$$
\operatorname{det} A=(1) \operatorname{det}(-3-14)+(-1)(1) \operatorname{det}\left[\begin{array}{ll}
5 & 2 \\
0 & 3
\end{array}\right]+(2) \operatorname{det}\left[\begin{array}{cc}
5 & -1 \\
0 & 7
\end{array}\right]
$$

Computing determinants

Lets compute the determinant of

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
5 & -1 & 2 \\
0 & 7 & 3
\end{array}\right]
$$

The definition gives

$$
\operatorname{det} A=(1) \operatorname{det}(-3-14)+(-1)(1) \operatorname{det}\left[\begin{array}{ll}
5 & 2 \\
0 & 3
\end{array}\right]+(2) \operatorname{det}\left[\begin{array}{cc}
5 & -1 \\
0 & 7
\end{array}\right]
$$

Computing determinants

Lets compute the determinant of

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
5 & -1 & 2 \\
0 & 7 & 3
\end{array}\right]
$$

The definition gives

$$
\operatorname{det} A=(1)(-3-14)+(-1)(1)(15-0)+(2) \operatorname{det}\left[\begin{array}{cc}
5 & -1 \\
0 & 7
\end{array}\right]
$$

Computing determinants

Lets compute the determinant of

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
5 & -1 & 2 \\
0 & 7 & 3
\end{array}\right]
$$

The definition gives

$$
\operatorname{det} A=(1)(-3-14)+(-1)(1)(15-0)+(2) \operatorname{det}\left[\begin{array}{cc}
5 & -1 \\
0 & 7
\end{array}\right]
$$

Computing determinants

Lets compute the determinant of

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
5 & -1 & 2 \\
0 & 7 & 3
\end{array}\right]
$$

The definition gives $\operatorname{det} A=(1)(-3-14)+(-1)(1)(15-0)+(2)(35)$

Computing determinants

Lets compute the determinant of

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
5 & -1 & 2 \\
0 & 7 & 3
\end{array}\right]
$$

The definition gives

$$
\operatorname{det} A=(1)(-3-14)+(-1)(1)(15-0)+(2)(35)=-17-15+70=38
$$

Computing determinants

Lets compute the determinant of

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
5 & -1 & 2 \\
0 & 7 & 3
\end{array}\right]
$$

The definition gives

$$
\operatorname{det} A=(1)(-3-14)+(-1)(1)(15-0)+(2)(35)=-17-15+70=38
$$

Cofactors

We have written $\operatorname{det} A=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{i j}$.

Cofactors

We have written $\operatorname{det} A=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{i j}$. We wish to write $\operatorname{det} A$ a little more simply, and so we combine some of the terms in these products.

Cofactors

We have written $\operatorname{det} A=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{i j}$. We wish to write $\operatorname{det} A$ a little more simply, and so we combine some of the terms in these products.

Definition

If A is a matrix then the (i, j)-cofactor of A is the number

$$
C_{i j}:=(-1)^{i+j} \operatorname{det} A_{i j}
$$

where $A_{i j}$ is the matrix obtained by deleting the i th row and j th column from A.

Cofactors

We have written $\operatorname{det} A=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{i j}$. We wish to write $\operatorname{det} A$ a little more simply, and so we combine some of the terms in these products.

Definition

If A is a matrix then the (i, j)-cofactor of A is the number

$$
C_{i j}:=(-1)^{i+j} \operatorname{det} A_{i j}
$$

where $A_{i j}$ is the matrix obtained by deleting the i th row and j th column from A.

Now we can write a simplified formula for det: If A is a square matrix then

$$
\operatorname{det} A=a_{11} C_{11}+a_{12} C_{12}+\ldots+a_{1 n} C_{1 n} .
$$

Cofactors

We have written $\operatorname{det} A=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{i j}$. We wish to write $\operatorname{det} A$ a little more simply, and so we combine some of the terms in these products.

Definition

If A is a matrix then the (i, j)-cofactor of A is the number

$$
C_{i j}:=(-1)^{i+j} \operatorname{det} A_{i j}
$$

where $A_{i j}$ is the matrix obtained by deleting the i th row and j th column from A.

Now we can write a simplified formula for det : If A is a square matrix then

$$
\operatorname{det} A=a_{11} C_{11}+a_{12} C_{12}+\ldots+a_{1 n} C_{1 n} .
$$

This is called the cofactor expansion across the first row of A.

Cofactor expansions

Cofactors let us compute the determinant in a lot of different ways, some of which are much more useful than others.

```
Theorem
Let \(A\) be \(n \times n\).
```


Cofactor expansions

Cofactors let us compute the determinant in a lot of different ways, some of which are much more useful than others.

Theorem

Let A be $n \times n$. The determinant can be computed across row i as

$$
\operatorname{det} A=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\ldots+a_{i n} C_{i n}
$$

Cofactor expansions

Cofactors let us compute the determinant in a lot of different ways, some of which are much more useful than others.

Theorem

Let A be $n \times n$. The determinant can be computed across row i as

$$
\operatorname{det} A=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\ldots+a_{i n} C_{i n}
$$

or down column j as

$$
\operatorname{det} A=a_{1 j} C_{1 j}+a_{1 j} C_{1 j}+\ldots+a_{1 j} C_{1 j}
$$

Cofactor expansions

Cofactors let us compute the determinant in a lot of different ways, some of which are much more useful than others.

Theorem

Let A be $n \times n$. The determinant can be computed across row i as

$$
\operatorname{det} A=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\ldots+a_{i n} C_{i n}
$$

or down column jas

$$
\operatorname{det} A=a_{1 j} C_{1 j}+a_{1 j} C_{1 j}+\ldots+a_{1 j} C_{1 j}
$$

These are called the cofactor expansions along row i and column j, respectively.

Choose rows or columns wisely

Example

If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 1\end{array}\right]$ then we can compute the determinant of A along the third row most easily $\operatorname{det} A$

Choose rows or columns wisely

Example

If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 1\end{array}\right]$ then we can compute the determinant of A along the third row most easily $\operatorname{det} A=(-1)^{3+1}(0) \operatorname{det} A_{31}$

Choose rows or columns wisely

Example
If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 1\end{array}\right]$ then we can compute the determinant of A along the third row most easily
$\operatorname{det} A=(-1)^{3+1}(0) \operatorname{det} A_{31}+(-1)^{3+2}(0) \operatorname{det} A_{32}$

Choose rows or columns wisely

Example
If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 1\end{array}\right]$ then we can compute the determinant of A along the third row most easily $\operatorname{det} A=(-1)^{3+1}(0) \operatorname{det} A_{31}+(-1)^{3+2}(0) \operatorname{det} A_{32}+(-1)^{3+3}(1) \operatorname{det} A_{33}$

Choose rows or columns wisely

Example
If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 1\end{array}\right]$ then we can compute the determinant of A
along the third row most easily
$\operatorname{det} A=(-1)^{3+1}(0) \operatorname{det} A_{31}+(-1)^{3+2}(0) \operatorname{det} A_{32}+(-1)^{3+3}(1) \operatorname{det} A_{33}=\mathrm{d}$

Choose rows or columns wisely

Example
If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 1\end{array}\right]$ then we can compute the determinant of A
along the third row most easily
$\operatorname{det} A=(-1)^{3+1}(0) \operatorname{det} A_{31}+(-1)^{3+2}(0) \operatorname{det} A_{32}+(-1)^{3+3}(1) \operatorname{det} A_{33}=\mathrm{d}$

Choose rows or columns wisely

Example
If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 1\end{array}\right]$ then we can compute the determinant of A
along the third row most easily
$\operatorname{det} A=(-1)^{3+1}(0) \operatorname{det} A_{31}+(-1)^{3+2}(0) \operatorname{det} A_{32}+(-1)^{3+3}(1) \operatorname{det} A_{33}=\mathrm{d}$

Determinants of diagonal matrices

The fact that we can compute determinants along any column or row means that determinants can be computed very easily for triangular matrices.

Determinants of diagonal matrices

The fact that we can compute determinants along any column or row means that determinants can be computed very easily for triangular matrices.

Theorem

Let A be a (lower or upper) triangular matrix.

Determinants of diagonal matrices

The fact that we can compute determinants along any column or row means that determinants can be computed very easily for triangular matrices.

Theorem

Let A be a (lower or upper) triangular matrix. Then $\operatorname{det} A$ is just the product of the entries on the diagonal.

Determinants of diagonal matrices

The fact that we can compute determinants along any column or row means that determinants can be computed very easily for triangular matrices.

Theorem

Let A be a (lower or upper) triangular matrix. Then $\operatorname{det} A$ is just the product of the entries on the diagonal.

Proof.

Assume A is upper triangular and take cofactor expansion along first column.

Determinants of diagonal matrices

The fact that we can compute determinants along any column or row means that determinants can be computed very easily for triangular matrices.

Theorem

Let A be a (lower or upper) triangular matrix. Then $\operatorname{det} A$ is just the product of the entries on the diagonal.

Proof.

Assume A is upper triangular and take cofactor expansion along first column. Then

$$
\operatorname{det} A=a_{11} C_{11}+a_{21} C_{21}+\ldots+a_{n 1} C_{n 1}=a_{11} C_{1} 1
$$

because all the entries $a_{k 1}$ are zero if $k>1$.

Determinants of diagonal matrices

The fact that we can compute determinants along any column or row means that determinants can be computed very easily for triangular matrices.

Theorem

Let A be a (lower or upper) triangular matrix. Then $\operatorname{det} A$ is just the product of the entries on the diagonal.

Proof.

Assume A is upper triangular and take cofactor expansion along first column. Then

$$
\operatorname{det} A=a_{11} C_{11}+a_{21} C_{21}+\ldots+a_{n 1} C_{n 1}=a_{11} C_{1} 1
$$

because all the entries $a_{k 1}$ are zero if $k>1$. So $\operatorname{det} A=a_{11} \operatorname{det} A_{11}$ but A_{11} is just a smaller triangular matrix with the diagonal entries $a_{22}, \ldots, a_{n n}$. So det $A_{11}=a_{22} a_{33} \ldots a_{n n}$.

Determinants of diagonal matrices

The fact that we can compute determinants along any column or row means that determinants can be computed very easily for triangular matrices.

Theorem

Let A be a (lower or upper) triangular matrix. Then $\operatorname{det} A$ is just the product of the entries on the diagonal.

Proof.

Assume A is upper triangular and take cofactor expansion along first column. Then

$$
\operatorname{det} A=a_{11} C_{11}+a_{21} C_{21}+\ldots+a_{n 1} C_{n 1}=a_{11} C_{1} 1
$$

because all the entries $a_{k 1}$ are zero if $k>1$. So $\operatorname{det} A=a_{11} \operatorname{det} A_{11}$ but A_{11} is just a smaller triangular matrix with the diagonal entries $a_{22}, \ldots, a_{n n}$. So $\operatorname{det} A_{11}=a_{22} a_{33} \ldots a_{n n}$. Thus $\operatorname{det} A=a_{11} a_{22} \ldots a_{n n}$.

Upper triangular matrices

Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 3 & 4 & 5 \\
0 & 0 & 2 & 7 \\
0 & 0 & 0 & -2
\end{array}\right]
$$

Upper triangular matrices

Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 3 & 4 & 5 \\
0 & 0 & 2 & 7 \\
0 & 0 & 0 & -2
\end{array}\right]
$$

Compute $\operatorname{det} A$.

Upper triangular matrices

Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 3 & 4 & 5 \\
0 & 0 & 2 & 7 \\
0 & 0 & 0 & -2
\end{array}\right]
$$

Compute $\operatorname{det} A$. We just take the product of the diagonal entries of $A: \operatorname{det} A=(1)(3)(2)(-2)=-12$.

Upper triangular matrices

Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 3 & 4 & 5 \\
0 & 0 & 2 & 7 \\
0 & 0 & 0 & -2
\end{array}\right]
$$

Compute $\operatorname{det} A$. We just take the product of the diagonal entries of $A: \operatorname{det} A=(1)(3)(2)(-2)=-12$.

Remark

WARNING: this only works for triangular matrices.

Upper triangular matrices

Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 3 & 4 & 5 \\
0 & 0 & 2 & 7 \\
0 & 0 & 0 & -2
\end{array}\right]
$$

Compute $\operatorname{det} A$. We just take the product of the diagonal entries of A : $\operatorname{det} A=(1)(3)(2)(-2)=-12$.

Remark

WARNING: this only works for triangular matrices. The determinant of $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ is 0 , not 1

Choosing zero-ish rows/columns

Sometimes people denote $\operatorname{det} A$ by $|A|$ with the brackets around A removed.

Choosing zero-ish rows/columns

Sometimes people denote $\operatorname{det} A$ by $|A|$ with the brackets around A removed.

Example
Compute $\left|\begin{array}{cccc}5 & -7 & 2 & 2 \\ 0 & 3 & 0 & -4 \\ -5 & -8 & 0 & 3 \\ 0 & 5 & 0 & -6\end{array}\right|$.

Choosing zero-ish rows/columns

Sometimes people denote $\operatorname{det} A$ by $|A|$ with the brackets around A removed.

Example

Compute $\left|\begin{array}{cccc}5 & -7 & 2 & 2 \\ 0 & 3 & 0 & -4 \\ -5 & -8 & 0 & 3 \\ 0 & 5 & 0 & -6\end{array}\right|$. We take a cofactor expansion along the third column, which only has the $(1,3)$-entry nonzero: $\operatorname{det} A=(-1)^{1+3} 2\left|\begin{array}{ccc}0 & 3 & -4 \\ -5 & -8 & 3 \\ 0 & 5 & -6\end{array}\right|$

Choosing zero-ish rows/columns

Sometimes people denote $\operatorname{det} A$ by $|A|$ with the brackets around A removed.

Example

Compute $\left|\begin{array}{cccc}5 & -7 & 2 & 2 \\ 0 & 3 & 0 & -4 \\ -5 & -8 & 0 & 3 \\ 0 & 5 & 0 & -6\end{array}\right|$. We take a cofactor expansion
along the third column, which only has the $(1,3)$-entry nonzero:
$\operatorname{det} A=(-1)^{1+3} 2\left|\begin{array}{ccc}0 & 3 & -4 \\ -5 & -8 & 3 \\ 0 & 5 & -6\end{array}\right|$
$=(2)(-1)^{2+1}(-5)\left|\begin{array}{ll}3 & -4 \\ 5 & -6\end{array}\right|$

Choosing zero-ish rows/columns

Sometimes people denote $\operatorname{det} A$ by $|A|$ with the brackets around A removed.

Example

Compute $\left|\begin{array}{cccc}5 & -7 & 2 & 2 \\ 0 & 3 & 0 & -4 \\ -5 & -8 & 0 & 3 \\ 0 & 5 & 0 & -6\end{array}\right|$. We take a cofactor expansion
along the third column, which only has the $(1,3)$-entry nonzero:
$\operatorname{det} A=(-1)^{1+3} 2\left|\begin{array}{ccc}0 & 3 & -4 \\ -5 & -8 & 3 \\ 0 & 5 & -6\end{array}\right|$
$=(2)(-1)^{2+1}(-5)\left|\begin{array}{ll}3 & -4 \\ 5 & -6\end{array}\right|=20$

