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Today’s lecture

1 We are going to discuss LU factorizations and how they can
be used to solve multiple systems of equations.

2 We are going to show how to find LU factorizations for
matrices.

3 We are going to start discussing determinants.
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Factorization

When you are learning about integers you often talk about
factorization

n = pq

(e.g. 10 = 5 · 2)

The same is the case for matrix algebra: we often
will take a matrix A and factorize it

A = XY

for some matrices X and Y with nice properties.
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Why factorize?

A lot of the time we want to solve a bunch of systems

Ax1 = b1 Ax2 = b2 . . .

where the constant vectors vary but the coefficient matrix stays
the same

(production in different years with same facilities, etc.)
You can speed up your solving with a factorization A = LU.
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Lower and upper triangular matrices

Just as you factor an integer into prime numbers, you choose the
kind of matrices into which you factor a matrix.

Definition

The diagonal entries in an m × n matrix A = [aij ] are aii .

A lower
triangular matrix is a matrix whose entries above the diagonal are
zero. A unit lower triangular matrix is a matrix with 1s on the
diagonal and zeros above the diagonal. An upper triangular matrix
is a matrix whose entries below the diagonal are zero.

Remark

A matrix which is both upper and lower triangular can only have
nonzero entries its diagonal, so it is a diagonal matrices.
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Examples of triangular matrices

Example

The matrix

[
1 1
1 0

]
is upper triangular.

The matrix 1 0 0
1 2 0
7 8 −1

 is lower triangular (all the entries above the

diagonal are zero) but not unit lower triangular. The matrix
1 0 0 0
2 1 0 0
3 3 1 0
−1 −7 2 1

 is unit lower triangular.
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LU factorization

An LU factorization of an m × n matrix A looks like

A = L︸︷︷︸
m×m

U︸︷︷︸
m×n

where L is unit Lower triangular and U is Upper triangular.

Example

Let A =

[
2 2 0
6 7 2

]
. Then we can write

A =

[
2 2 0
6 7 2

]
=

[
1 0
3 1

]
︸ ︷︷ ︸

L

[
2 2 0
0 1 2

]
︸ ︷︷ ︸

U

.

Note that L is square and U in this case is not square.
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What is an LU factorization good for?

LU factorizations are useful for solving systems via the following
two step process.

Fact

Suppose you have A = LU, where L is unit lower triangular and U
is upper triangular. To solve

Ax = b

do the following

1 solve Ly = b

2 solve Ux = y

Then Ax = LUx = L(Ux) = Ly = b.
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Example of solving with LU

Let A be the matrix
3 −7 −2 2
−3 5 1 0
6 −4 0 −5
−9 5 −5 12

 =


1 0 0 0
−1 1 0 0
2 −5 1 0
−3 8 3 1


︸ ︷︷ ︸

L


3 −7 −2 2
0 −2 −1 2
0 0 −1 1
0 0 0 −1


︸ ︷︷ ︸

U

Solve Ax =


−9
5
7
1

 First solve Ly = b


1 0 0 0 −9
−1 1 0 0 5
2 −5 1 0 7
−3 8 3 1 1

 .
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Solving ctd


1 0 0 0 −9
−1 1 0 0 5
2 −5 1 0 7
−3 8 3 1 1

 ∼


1 0 0 0 −9
0 1 0 0 −4
0 0 1 0 5
0 0 0 1 1



So the solution to Ly = b is y =


−9
−4
5
1

.

Now we find the

solution by solving Ux = y, where U =


3 −7 −2 2
0 −2 −1 2
0 0 −1 1
0 0 0 −1

.


3 −7 −2 2 −9
0 −2 −1 2 −4
0 0 −1 1 5
0 0 0 −1 1

 this is the augmented matrix
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Solving ctd ctd


3 −7 −2 2 −9
0 −2 −1 2 −4
0 0 −1 1 5
0 0 0 −1 1



Row reduction of this augmented matrix yields
3 −7 −2 2 −9
0 −2 −1 2 −4
0 0 −1 1 5
0 0 0 −1 1

 ∼


1 0 0 0 3
0 1 0 0 4
0 0 1 0 −6
0 0 0 1 −1



So the solution is x =


3
4
−6
−1

.
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Why did we use A = LU?

You can check that doing the row reductions of Ly = b and
Ux = y takes a total of 28 operations.

Just solving Ax = b using
row reduction requires 62 (more than twice as many). So solving
with the LU factorization saves us a lot of time.
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Finding the factorization A = LU

All this is great but it doesn’t answer the question: how do you find
the factorization A = LU?

It’s actually built into row reduction!

Fact

If A is an m × n matrix that you can reduce without swapping
rows, the following steps factor A = LU:

1 First column of L = First column of A scaled to have top
entry 1

2 Reduce down the first column of A

3 Look at the next pivot column, at and below the pivot: that is
the next column of L as soon as you divide by the pivot.

4 repeat

5 If you run out of pivot columns, just use columns from the
identity matrix to fill out L.

Dan Crytser Lecture 11:LU factorizations



Finding the factorization A = LU

All this is great but it doesn’t answer the question: how do you find
the factorization A = LU? It’s actually built into row reduction!

Fact

If A is an m × n matrix that you can reduce without swapping
rows, the following steps factor A = LU:

1 First column of L = First column of A scaled to have top
entry 1

2 Reduce down the first column of A

3 Look at the next pivot column, at and below the pivot: that is
the next column of L as soon as you divide by the pivot.

4 repeat

5 If you run out of pivot columns, just use columns from the
identity matrix to fill out L.

Dan Crytser Lecture 11:LU factorizations



Finding the factorization A = LU

All this is great but it doesn’t answer the question: how do you find
the factorization A = LU? It’s actually built into row reduction!

Fact

If A is an m × n matrix that you can reduce without swapping
rows, the following steps factor A = LU:

1 First column of L = First column of A scaled to have top
entry 1

2 Reduce down the first column of A

3 Look at the next pivot column, at and below the pivot: that is
the next column of L as soon as you divide by the pivot.

4 repeat

5 If you run out of pivot columns, just use columns from the
identity matrix to fill out L.

Dan Crytser Lecture 11:LU factorizations



Example: factorization

Let’s get the LU factorization for

A =


1 5
2 6
3 7
4 8


L will be 4×4 and U will be 4×2. The first column of L is the first
column of A (we don’t need to scale it because the first entry is 1).

L =


1 0 0 0
2 ∗ 0 0
3 ∗ ∗ 0
4 ∗ ∗ ∗
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Example: ctd.

To get the next column of L we keep reducing
1 5
2 6
3 7
4 8

 ∼


1 5
0 −4
0 −8
0 −12


The new pivot is −4. The column at and below the pivot is −4
−8
−12

 which we scale by −1
4 to obtain the second column of L: 1

2
3
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Example: ctd. ctd.

Now we have

L =


1 0 0 0
2 1 0 0
3 2 ∗ 0
4 3 ∗ ∗

 .

Now there are no more pivots left in A. The rest of the stars we fill
up with columns from the appropriate identity matrix.

L =


1 0 0 0
2 1 0 0
3 2 1 0
4 3 0 1

 .

The matrix U is just the echelon form from the previous slide

U =


1 5
0 −4
0 −8
0 −12
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Determinants

Remember the theorem

Theorem

Let A be a 2× 2 matrix A =

[
a b
c d

]
. Then A is invertible if and

only if ad − bc 6= 0, and A−1 = 1
ad−bc

[
d −b
−c a

]
.

We called ad − bc the determinant of

[
a b
c d

]
. It determines

when a 2× 2 matrix is invertible.
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Determinants for 3× 3 matrices

Let A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

. Let’s row reduce:

 a11 a12 a13
a21 a22 a23
a31 a32 a133

 ∼
 a11 a12 a13

0 a11a22 − a12a21 a11a23 − a13a21
0 a11a32 − a12a31 a11a33 − a13a31


Multiply row 3 by a11a22− a12a21 and then add −(a11a32− a12a31)
times row 2.
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Determinants for 3× 3 matrices

We row reduced

A ∼

 a11 a12 a13
0 a11a22 − a12a21 a11a23 − a13a21
0 0 a11∆


where

∆ = a11a22a33+a12a23a31+a13a21a32−a11a23a32−a12a21a33−a13a22a31

We call ∆ the determinant of A, denoted det A. In order for A to
be invertible, it must have a pivot in every column. So det A must
be nonzero if A is to be invertible. We shall see that the converse
is true: A is invertible if the determinant of A is nonzero.
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We can write

det A = a11a22a33+a12a23a31+a13a21a32−a11a23a32−a12a21a33−a13a22a31

as

det A = a11 det

[
a22 a23
a32 a33

]
−a12 det

[
a21 a23
a31 a33

]
+a13 det

[
a21 a22
a31 a32

]

We can write

det A = a11 det A11 − a12 det A12 + a13 det A13

where Aij is the matrix you get when you delete row i and column
j from A.
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Definition of the determinant

The previous formula motivates the definition of the determinant
for an n × n matrix.

This definition is recursive in the sense that it
defines the determinant of A in terms of the determinants of a
number of smaller matrices contained in A.

Definition

For n ≥ 2, the determinant of an n × n matrix A = [aij ] is the
sum of n terms of the form ±a1j det A1j with plus and minus signs
alternating, where the entries a11, a12, . . . , an1 are the first row of
A. That is,

det A = a11 det A11 − a12 det A12 + . . . + (−1)1+na1n det A1n (1)

=
n∑

j=1

(−1)1+ja1j det A1j (2)

We will shortly see more convenient ways of computing the
determinant than “across the first row” as in the definition.
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Computing determinants

Lets compute the determinant of

A =

 1 1 2
5 −1 2
0 7 3



The definition gives

det A = (1) det

[
−1 2
7 3

]
+(−1)(1) det

[
5 2
0 3

]
+(2) det

[
5 −1
0 7

]
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Computing determinants

Lets compute the determinant of

A =

 1 1 2
5 −1 2
0 7 3


The definition gives

det A = (1) det(−3−14)+(−1)(1) det

[
5 2
0 3

]
+(2) det

[
5 −1
0 7

]
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Computing determinants

Lets compute the determinant of

A =

 1 1 2
5 −1 2
0 7 3


The definition gives

det A = (1)(−3− 14) + (−1)(1)(15− 0) + (2) det

[
5 −1
0 7

]
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Computing determinants

Lets compute the determinant of

A =

 1 1 2
5 −1 2
0 7 3


The definition gives

det A = (1)(−3−14)+(−1)(1)(15−0)+(2)(35)

= −17−15+70 = 38
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Cofactors

We have written det A =
∑n

j=1(−1)1+ja1j det Aij .

We wish to
write det A a little more simply, and so we combine some of the
terms in these products.

Definition

If A is a matrix then the (i , j)-cofactor of A is the number

Cij := (−1)i+j det Aij

where Aij is the matrix obtained by deleting the ith row and jth
column from A.

Now we can write a simplified formula for det: If A is a square
matrix then

det A = a11C11 + a12C12 + . . . + a1nC1n.

This is called the cofactor expansion across the first row of A.
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Cofactor expansions

Cofactors let us compute the determinant in a lot of different
ways, some of which are much more useful than others.

Theorem

Let A be n × n.

The determinant can be computed across row i as

det A = ai1Ci1 + ai2Ci2 + . . . + ainCin

or down column j as

det A = a1jC1j + a1jC1j + . . . + a1jC1j

These are called the cofactor expansions along row i and column j,
respectively.
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Choose rows or columns wisely

Example

If A =

 1 2 3
4 5 6
0 0 1

 then we can compute the determinant of A

along the third row most easily

det A

= (−1)3+1(0) det A31+(−1)3+2(0) det A32+(−1)3+3(1) det A33 = det A33 = det

[
1 2
4 5

]
= −3
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Determinants of diagonal matrices

The fact that we can compute determinants along any column or
row means that determinants can be computed very easily for
triangular matrices.

Theorem

Let A be a (lower or upper) triangular matrix. Then det A is just
the product of the entries on the diagonal.

Proof.

Assume A is upper triangular and take cofactor expansion along
first column. Then

det A = a11C11 + a21C21 + . . . + an1Cn1 = a11C11

because all the entries ak1 are zero if k > 1. So
det A = a11 det A11 but A11 is just a smaller triangular matrix with
the diagonal entries a22, . . . , ann. So det A11 = a22a33 . . . ann. Thus
det A = a11a22 . . . ann.
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Upper triangular matrices

Let

A =


1 2 3 4
0 3 4 5
0 0 2 7
0 0 0 −2



Compute det A. We just take the product of the diagonal entries
of A: det A = (1)(3)(2)(−2) = −12.

Remark

WARNING: this only works for triangular matrices. The

determinant of

[
1 1
1 1

]
is 0, not 1
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Choosing zero-ish rows/columns

Sometimes people denote det A by |A| with the brackets around A
removed.

Example

Compute

∣∣∣∣∣∣∣∣
5 −7 2 2
0 3 0 −4
−5 −8 0 3
0 5 0 −6

∣∣∣∣∣∣∣∣. We take a cofactor expansion

along the third column, which only has the (1, 3)-entry nonzero:

det A = (−1)1+32

∣∣∣∣∣∣
0 3 −4
−5 −8 3
0 5 −6

∣∣∣∣∣∣
= (2)(−1)2+1(−5)

∣∣∣∣ 3 −4
5 −6

∣∣∣∣ = 20
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Choosing zero-ish rows/columns

Sometimes people denote det A by |A| with the brackets around A
removed.

Example

Compute

∣∣∣∣∣∣∣∣
5 −7 2 2
0 3 0 −4
−5 −8 0 3
0 5 0 −6

∣∣∣∣∣∣∣∣. We take a cofactor expansion

along the third column, which only has the (1, 3)-entry nonzero:

det A = (−1)1+32

∣∣∣∣∣∣
0 3 −4
−5 −8 3
0 5 −6

∣∣∣∣∣∣
= (2)(−1)2+1(−5)

∣∣∣∣ 3 −4
5 −6

∣∣∣∣ = 20
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