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Today’s lecture

Today we will

1 Single out a class of especially nice matrices called the
invertible matrices.

2 Discuss how to compute the inverse of a invertible matrix.

3 State a theorem which says when a square matrix possesses
an inverse.
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Multiplication of matrices

We saw on Wednesday’s lecture that if A is an m × n matrix and
B is an n × p matrix, then the product AB is defined and

AB =
[
Ab1 Ab2 . . . Abp

]
.

Unlike the situation with real numbers, you can find (with not too
much difficulty) matrices A,B,C such that

AB = AC and yet B 6= C .

That is, you cannot “divide out by a general matrix A.” Today we
will describe all the matrices that you can divide out by. This
entails finding the “reciprocal” of a matrix A, which is only
possible for some matrices.
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The Identity Matrix

We aim to define the inverse of a matrix in (very) rough analogy
with the reciprocal of a real number.

As x−1 := 1
x , we will need to

know what “1” means in a matrix context.

Definition

Let m ≥ 1 be an integer. Then Im, the m ×m identity matrix, is
the m ×m matrix given by

Im :=


1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1

 .

That is, Im is a diagonal matrix with 1s on the diagonal.
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Examples of identity matrices

Example

I2 =

[
1 0
0 1

]

I3 =

 1 0 0
0 1 0
0 0 1

 I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



The interesting thing about the identity matrices is that for any
m × n matrix A, ImA = A and AIn = A. (Use row-column rule).
Sometimes when the context is abundantly clear, we’ll write I
instead of In, but we’ll try to retain the subscript to avoid
confusion.
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Invertible matrices

Definition

An n × n matrix A is invertible if there exists an n × n matrix C
such that

AC = In = CA.

If such a C exists, we denote it by A−1 and refer to it as the
inverse of A. (Don’t sweat about it too much, but a matrix which
is not invertible is sometimes called a singular matrix, and an
invertible matrix is sometimes referred to as a non-singular
matrix.)

Example

Let A =

[
7 2
3 1

]
and C =

[
1 −2
−3 7

]
. Then you can check

that
AC = CA = I2

Thus A is invertible and A−1 = C .
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Examples

Example

If A = I2 =

[
1 0
0 1

]
, then A is invertible and A = A−1.

Example

The matrix A =

[
1 0
0 0

]
is not invertible. Note that

[
1 0
0 0

] [
a b
c d

]
=

[
a b
0 0

]
.

So no matter what you multiply A by, you can’t get the identity
matrix.
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Inverses for 2× 2 matrices

Probably you noticed a relationship between the entries of the
matrices in the previous example.

A =

[
7 2
3 1

]
and A−1 =

[
1 −2
−3 7

]
.

There is a rule for 2× 2 matrices describing this precisely.

Theorem

Let A =

[
a b
c d

]
. If ad − bc 6= 0, then A is invertible and

A−1 =
1

ad − bc

[
d −b
−c a

]
.

If ad − bc = 0 then A is not invertible.

The quantity ad − bc (diagonal product minus off-diagonal
product) is called the determinant of A.
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Inverses for 2× 2 matrices, ctd.

A−1 =
1

ad − bc

[
d −b
−c a

]

Example

Let B =

[
1 1
2 2

]
. Is B invertible? We compute the determinant:

(1)(2)− (2)(1) = 0. The determinant is 0, so B is not invertible.

Example

Let A =

[
5 2
2 1

]
. Compute the determinant: (5)(1)− (2)(2) = 1.

So A is invertible. We have A−1 = 1
1

[
1 −2
−2 5

]
=

[
1 −2
−2 5

]
.
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Using inverse matrices to solve equations

You can solve equations with the matrix inverse.

Theorem

Let A be an invertible n × n matrix. Then for each b ∈ Rn, the
equation Ax = b is consistent and has unique solution x = A−1b.

Proof.

First we show that A−1b is a solution.Check:
A(A−1b) = (AA−1)b, and AA−1 = In. So A(A−1b) = Inb = b.
Thus x = A−1b is a solution to Ax = b.
If x is a solution to Ax = b, then multiply both sides of the
equation to obtain A−1(Ax) = A−1b. Then rearrange and cancel
on the left to obtain x = A−1b
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Thus x = A−1b is a solution to Ax = b.
If x is a solution to Ax = b, then multiply both sides of the
equation to obtain A−1(Ax) = A−1b. Then rearrange and cancel
on the left to obtain x = A−1b
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Example: solving systems with inverses

Lets solve
3x + y = 11

3x + 2y = 5

using inverses of matrices.

This is equivalent to solving Ax = b,

where A =

[
3 1
3 2

]
and b =

[
11
5

]
. The determinant of A is

(3)(2)− (3) = 3. Thus A−1 = 1
3

[
2 −1
−3 3

]
=

[
2/3 −1/3
−1 1

]
.

Thus the solution x to the above equation is

x = A−1b =

[
2/3 −1/3
−1 1

] [
11
5

]
=

[
22/3− 5/3
−11 + 5

]
=

[
17/3
−6

]
.

Thus the unique solution is x =

[
17/3
−6

]
.So x = 17/3 and

y = −6.
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Properties of invertible matrices

Theorem

1 If A is an invertible matrix, then A−1 is also invertible, and
the inverse of A−1 is A.

2 If A and B are n × n invertible matrices, then so is AB, and
the inverse of AB is B−1A−1 [Similar to the formula for the
transpose of a product]

3 The transpose of an invertible matrix is invertible, and
(AT )−1 = (A−1)T .

Proof.

Proof in the book is uncomplicated but you should read it. You
really only need associativity of matrix multiplication, the fact that
InA = A = AIn for n × n matrices, and properties of the
transpose.

In general, if A1,A2, . . . ,Ak are a bunch of invertible n×n matrices
then so is A1A2 . . .Ak , and (A1A2 . . .Ak)−1 = A−1

k . . .A−1
2 A−1

1 .
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Elementary matrices and row operations

Recall the elementary row operations: interchange, replacement,
scaling.

We want to reformulate them so that performing an
elementary row operation on the square matrix A is the same as
taking the product EA by some invertible matrix E . This will allow
us effective computation of matrix inverses.

Definition

An elementary matrix is a matrix obtained by performing an
elementary row operation on an identity matrix.

Example [
0 1
1 0

]  1 0 0
2 1 0
0 0 1

  1 0 0
0 1 0
0 0 5


are all elementary matrices.
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Elementary matrices are invertible

Remember that the elementary row operations can be reversed:

1 interchanging rows i1 and i2 is reversed by interchanging the
rows again.

2 scaling a row by c is reversed by scaling the same row by 1
c

3 replacing row i1 with c times row i2 is reversed by subtracting
c times row i2 from row i1

This gives us that every elementary matrix E corresponding to a
row operation is invertible, and E−1 is the elementary matrix
corresponding to the reverse elementary row operation.
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Elementry matrices are invertible

Example

Let E =

[
1 0
5 1

]
. Then E is the elementary matrix corresponding

to the row operation “add 5 times the first row to the second
row.”

Then its inverse is the elementary matrix corresponding to
the row operation “subtract 5 times the first row from the second
row.” That is,

E−1 =

[
1 0
−5 1

]
.
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Elementary matrices in action

Example

Let E1 be the elementary matrix obtained by adding the first row
of I2 to its second row.

E1 =

[
1 0
1 1

]
.

Then for any 2× 2 matrix A =

[
a b
c d

]
we have

E1A =

[
1 0
1 1

] [
a b
c d

]
=

[
a b

a + c b + d

]
.
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Invertibility and elementary row ops.

Theorem

Let A be an n × n matrix. Then A is invertible if and only if A is
row equivalent to In, and any sequence of row operations that
transforms A into I applied in the same order to I transforms I
into A−1.

Put another way, if E1,E2, . . . ,Ek are the elementary
matrices corresponding to the row operations transforming A into
I , so that

E1E2 . . .EkA = I ,

then we necessarily have that

E1E2 . . .Ek I = E1 . . .Ek = A−1.
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Matrix inversion algorithm

The theorem in the preceding slide tells us how to compute the
inverse of any invertible matrix, and it encodes a way to check if
an n × n matrix is invertible, all through row reduction.

Fact

Let A be an n × n matrix and form the augmented matrix

[A In] .

Row reduce this matrix as usual. If the reduced echelon form looks
like

[In C ]

then A is invertible and C = A−1. If the reduced echelon form
looks any other way, then A is not invertible (in fact, you can
decide if A is invertible just by transforming to echelon form and
seeing if there are any rows that have n 0s in the left half.
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Example of MIA

Let’s find determine if the matrix A =

 1 2 3
3 1 2
2 3 1

 is invertible

and find its inverse, if possible. Form the augmented system 1 2 3 1 0 0
3 1 2 0 1 0
2 3 1 0 0 1

 .
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Ex. of MIA, pt. II

 1 2 3 1 0 0
3 1 2 0 1 0
2 3 1 0 0 1



→

 1 2 3 1 0 0
0 −5 −7 −3 1 0
0 −1 −5 −2 0 1


 1 2 3 1 0 0

0 −5 −7 −3 1 0
0 −1 −5 −2 0 1

 →
 1 2 3 1 0 0

0 1 5 2 0 −1
0 −5 −7 −3 1 0


 1 2 3 1 0 0

0 1 5 2 0 −1
0 −5 −7 −3 1 0

 →
 1 2 3 1 0 0

0 1 5 2 0 −1
0 0 18 7 1 −5

 .

Now we can pause at echelon form to say that there are no bad
rows.
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Row reduction details

We keep row reducing the entire augmented matrix 1 2 3 1 0 0
0 1 5 2 0 −1
0 0 18 7 1 −5

→
 1 2 3 1 0 0

0 1 5 2 0 −1
0 0 1 7/18 1/18 −5/18


 1 2 3 1 0 0

0 1 5 2 0 −1
0 0 1 7

18
1
18

−5
18



→

 1 2 0 −3/18 −3/18 15/18
0 1 0 1/18 −5/18 7/18
0 0 1 7/18 1/18 −5/18


 1 2 0 − 3

18
−3
18

15
18

0 1 0 1
18

−5
18

−13
9

0 0 1 7
18

1
18

−5
18

 →
 1 0 0 −5/18 7/8 1/18

0 1 0 1/18 −5/18 7/18
0 0 1 7/18 1/18 −5/18

 .

This is in reduced echelon form. The right half of the augmented
matrix is the inverse of A.
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Inverse

We computed that 1 2 3
3 1 2
2 3 1

−1

=

 −5/18 7/18 1/18
1/18 −5/18 7/18
7/18 1/18 −5/18

 .

If you multiply the two matrices you get the identity 1 2 3
3 1 2
2 3 1

 −5/18 7/18 1/18
1/18 −5/18 7/18
7/18 1/18 −5/18

 =

 1 0 0
0 1 0
0 0 1

 .
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When is a matrix invertible?

We have seen that a matrix is invertible if you can reduce it to the
identity matrix via row operations. This description is not
complete enough for our purposes–we don’t always want to have
to run the row reduction algorithm every time.
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Theorem (The Invertible Matrix Theorem)

If A is an n × n matrix then the following are equivalent:

1 A is invertible

2 A is row equivalent to In
3 A has n pivot columns

4 the equation Ax = 0 has only the trivial solution

5 the columns of A form a linearly independent set

6 the linear transformation x 7→ Ax is one-to-one

7 the equation Ax = b has at least one solution for each b ∈ Rn

8 the columns of A span Rn

9 the linear transformation x 7→ Ax maps Rn onto Rn

10 there is an n × n matrix C such that CA = In
11 there is an n × n matrix D such that AD = In
12 AT is invertible
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Proving the IMT: 1 implies 2 implies 3 implies 4 implies 5

If A is invertible then A is row equivalent to In by the previous
section. So (1) implies (2).

If A is row-equivalent to In, then the
row-operations that transform A to In actually transform A into
reduced echelon form. Since In has no non-pivot columns, A has
no non-pivot columns. So (2) implies (3) Suppose A has n pivot
columns. If we augment A with 0 and row-reduce, there are no
free variables. Thus Ax = 0 has only the trivial solution. So (3)
implies (4) Any linear dependence relation among the columns of
A gives a non-trivial solution to Ax = 0. Thus (4) implies (5).
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Application of the IMT

We can use the IMT to check if things are non-invertible really
easily.

Example

Let A =


1 0 1 2
2 0 2 4
3 0 2 6
4 1 3 8

. Let’s see if A is invertible without row

reduction. There’s a whole bunch of ways to check, but one that is
nice is: if A has linearly dependent columns, then A is not
invertible. We note that the fourth column of A is 2 times the first
column of A. Thus the columns of A are linearly dependent, so A
is not invertible by the IMT.
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nice is: if A has linearly dependent columns, then A is not
invertible. We note that the fourth column of A is 2 times the first
column of A. Thus the columns of A are linearly dependent, so A
is not invertible by the IMT.
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Invertible maps

Definition

A function f : X → Y is called invertible (or bijective) if there is a
map g : Y → X such that f (g(y)) = y for all y ∈ Y and
g(f (x)) = x for all x ∈ X . If such a g exists, it is called the
inverse of f .

When is a linear transformation T given by x 7→ Ax invertible?
Precisely when A is an invertible matrix.
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Theorem

Let A be n × n and let T be the linear transformation
x 7→ Ax.

Then T is invertible if and only if A is invertible.

Proof.

Suppose that A is invertible. Define S : Rn → Rn by S(x) = A−1x.
Then T (S(x)) = AA−1(x) = x and S(T (x)) = x for all x ∈ Rn.
Suppose that T is invertible with inverse S . We show that Ax = 0
has only the trivial solution. If T (x) = T (0) then
S(T (x)) = S(T (0)). But S is the inverse of T , so x = 0. Thus
the only solution to Ax = 0 is the trivial solution. The IMT tells us
that A is invertible.
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