Lecture 10: Invertible matrices. Finding the inverse of a matrix

Danny W. Crytser

April 11, 2014

Today's lecture

Today we will

Today's lecture

Today we will
(1) Single out a class of especially nice matrices called the invertible matrices.

Today we will
(1) Single out a class of especially nice matrices called the invertible matrices.
(2) Discuss how to compute the inverse of a invertible matrix.

Today's lecture

Today we will
(1) Single out a class of especially nice matrices called the invertible matrices.
(2) Discuss how to compute the inverse of a invertible matrix.
(3) State a theorem which says when a square matrix possesses an inverse.

Today's lecture

Today we will
(1) Single out a class of especially nice matrices called the invertible matrices.
(2) Discuss how to compute the inverse of a invertible matrix.
(3) State a theorem which says when a square matrix possesses an inverse.

Multiplication of matrices

We saw on Wednesday's lecture that if A is an $m \times n$ matrix and B is an $n \times p$ matrix, then the product $A B$ is defined and

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{p}
\end{array}\right]
$$

Multiplication of matrices

We saw on Wednesday's lecture that if A is an $m \times n$ matrix and B is an $n \times p$ matrix, then the product $A B$ is defined and

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{p}
\end{array}\right]
$$

Unlike the situation with real numbers, you can find (with not too much difficulty) matrices A, B, C such that

$$
A B=A C \text { and yet } B \neq C
$$

Multiplication of matrices

We saw on Wednesday's lecture that if A is an $m \times n$ matrix and B is an $n \times p$ matrix, then the product $A B$ is defined and

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{p}
\end{array}\right]
$$

Unlike the situation with real numbers, you can find (with not too much difficulty) matrices A, B, C such that

$$
A B=A C \text { and yet } B \neq C
$$

That is, you cannot "divide out by a general matrix A."

Multiplication of matrices

We saw on Wednesday's lecture that if A is an $m \times n$ matrix and B is an $n \times p$ matrix, then the product $A B$ is defined and

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{p}
\end{array}\right]
$$

Unlike the situation with real numbers, you can find (with not too much difficulty) matrices A, B, C such that

$$
A B=A C \text { and yet } B \neq C
$$

That is, you cannot "divide out by a general matrix A." Today we will describe all the matrices that you can divide out by.

Multiplication of matrices

We saw on Wednesday's lecture that if A is an $m \times n$ matrix and B is an $n \times p$ matrix, then the product $A B$ is defined and

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{p}
\end{array}\right]
$$

Unlike the situation with real numbers, you can find (with not too much difficulty) matrices A, B, C such that

$$
A B=A C \text { and yet } B \neq C
$$

That is, you cannot "divide out by a general matrix A." Today we will describe all the matrices that you can divide out by. This entails finding the "reciprocal" of a matrix A, which is only possible for some matrices.

We aim to define the inverse of a matrix in (very) rough analogy with the reciprocal of a real number.

We aim to define the inverse of a matrix in (very) rough analogy with the reciprocal of a real number. As $x^{-1}:=\frac{1}{x}$, we will need to know what " 1 " means in a matrix context.

The Identity Matrix

We aim to define the inverse of a matrix in (very) rough analogy with the reciprocal of a real number. As $x^{-1}:=\frac{1}{x}$, we will need to know what " 1 " means in a matrix context.

Definition

Let $m \geq 1$ be an integer.

We aim to define the inverse of a matrix in (very) rough analogy with the reciprocal of a real number. As $x^{-1}:=\frac{1}{x}$, we will need to know what " 1 " means in a matrix context.

Definition

Let $m \geq 1$ be an integer. Then I_{m}, the $m \times m$ identity matrix, is the $m \times m$ matrix given by

$$
I_{m}:=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]
$$

The Identity Matrix

We aim to define the inverse of a matrix in (very) rough analogy with the reciprocal of a real number. As $x^{-1}:=\frac{1}{x}$, we will need to know what " 1 " means in a matrix context.

Definition

Let $m \geq 1$ be an integer. Then I_{m}, the $m \times m$ identity matrix, is the $m \times m$ matrix given by

$$
I_{m}:=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]
$$

That is, I_{m} is a diagonal matrix with 1 s on the diagonal.

Examples of identity matrices

Example

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Examples of identity matrices

Example

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Examples of identity matrices

Example

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Examples of identity matrices

Example

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The interesting thing about the identity matrices is that for any $m \times n$ matrix $A, I_{m} A=A$ and $A I_{n}=A$.

Examples of identity matrices

Example

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The interesting thing about the identity matrices is that for any $m \times n$ matrix $A, I_{m} A=A$ and $A I_{n}=A$. (Use row-column rule).

Example

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The interesting thing about the identity matrices is that for any $m \times n$ matrix $A, I_{m} A=A$ and $A I_{n}=A$. (Use row-column rule). Sometimes when the context is abundantly clear, we'll write I instead of I_{n}, but we'll try to retain the subscript to avoid confusion.

Example

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The interesting thing about the identity matrices is that for any $m \times n$ matrix $A, I_{m} A=A$ and $A I_{n}=A$. (Use row-column rule). Sometimes when the context is abundantly clear, we'll write I instead of I_{n}, but we'll try to retain the subscript to avoid confusion.

Invertible matrices

Definition

An $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix C such that

$$
A C=I_{n}=C A
$$

Invertible matrices

Definition

An $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix C such that

$$
A C=I_{n}=C A
$$

If such a C exists, we denote it by A^{-1} and refer to it as the inverse of A.

Invertible matrices

Definition

An $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix C such that

$$
A C=I_{n}=C A
$$

If such a C exists, we denote it by A^{-1} and refer to it as the inverse of A. (Don't sweat about it too much, but a matrix which is not invertible is sometimes called a singular matrix, and an invertible matrix is sometimes referred to as a non-singular matrix.)

Invertible matrices

Definition

An $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix C such that

$$
A C=I_{n}=C A
$$

If such a C exists, we denote it by A^{-1} and refer to it as the inverse of A. (Don't sweat about it too much, but a matrix which is not invertible is sometimes called a singular matrix, and an invertible matrix is sometimes referred to as a non-singular matrix.)

Example

Let $A=\left[\begin{array}{ll}7 & 2 \\ 3 & 1\end{array}\right]$ and $C=\left[\begin{array}{cc}1 & -2 \\ -3 & 7\end{array}\right]$.

Invertible matrices

Definition

An $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix C such that

$$
A C=I_{n}=C A
$$

If such a C exists, we denote it by A^{-1} and refer to it as the inverse of A. (Don't sweat about it too much, but a matrix which is not invertible is sometimes called a singular matrix, and an invertible matrix is sometimes referred to as a non-singular matrix.)

Example

Let $A=\left[\begin{array}{ll}7 & 2 \\ 3 & 1\end{array}\right]$ and $C=\left[\begin{array}{cc}1 & -2 \\ -3 & 7\end{array}\right]$. Then you can check that

$$
A C=C A=I_{2}
$$

Thus A is invertible and $A^{-1}=C$.

Examples

Example

If $A=I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then A is invertible and $A=A^{-1}$.

Examples

Example

If $A=I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then A is invertible and $A=A^{-1}$.

Example

The matrix $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is not invertible.

Examples

Example

If $A=I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then A is invertible and $A=A^{-1}$.

Example

The matrix $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is not invertible. Note that

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right] .
$$

Examples

Example

If $A=I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then A is invertible and $A=A^{-1}$.

Example

The matrix $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is not invertible. Note that

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]
$$

So no matter what you multiply A by, you can't get the identity matrix.

Inverses for 2×2 matrices

Probably you noticed a relationship between the entries of the matrices in the previous example.

$$
A=\left[\begin{array}{ll}
7 & 2 \\
3 & 1
\end{array}\right] \text { and } A^{-1}=\left[\begin{array}{cc}
1 & -2 \\
-3 & 7
\end{array}\right]
$$

Inverses for 2×2 matrices

Probably you noticed a relationship between the entries of the matrices in the previous example.

$$
A=\left[\begin{array}{ll}
7 & 2 \\
3 & 1
\end{array}\right] \text { and } A^{-1}=\left[\begin{array}{cc}
1 & -2 \\
-3 & 7
\end{array}\right]
$$

There is a rule for 2×2 matrices describing this precisely.

Theorem

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

Inverses for 2×2 matrices

Probably you noticed a relationship between the entries of the matrices in the previous example.

$$
A=\left[\begin{array}{ll}
7 & 2 \\
3 & 1
\end{array}\right] \text { and } A^{-1}=\left[\begin{array}{cc}
1 & -2 \\
-3 & 7
\end{array}\right]
$$

There is a rule for 2×2 matrices describing this precisely.

Theorem

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Inverses for 2×2 matrices

Probably you noticed a relationship between the entries of the matrices in the previous example.

$$
A=\left[\begin{array}{ll}
7 & 2 \\
3 & 1
\end{array}\right] \text { and } A^{-1}=\left[\begin{array}{cc}
1 & -2 \\
-3 & 7
\end{array}\right]
$$

There is a rule for 2×2 matrices describing this precisely.

Theorem

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

If $a d-b c=0$ then A is not invertible.

Inverses for 2×2 matrices

Probably you noticed a relationship between the entries of the matrices in the previous example.

$$
A=\left[\begin{array}{ll}
7 & 2 \\
3 & 1
\end{array}\right] \text { and } A^{-1}=\left[\begin{array}{cc}
1 & -2 \\
-3 & 7
\end{array}\right]
$$

There is a rule for 2×2 matrices describing this precisely.

Theorem

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

If $a d-b c=0$ then A is not invertible.
The quantity $a d-b c$ (diagonal product minus off-diagonal product) is called the determinant of A.

Inverses for 2×2 matrices, ctd.

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Inverses for 2×2 matrices, ctd.

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Example

Let $B=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$.

Inverses for 2×2 matrices, ctd.

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Example

Let $B=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$. Is B invertible?

Inverses for 2×2 matrices, ctd.

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Example

Let $B=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$. Is B invertible? We compute the determinant: $(1)(2)-(2)(1)=0$.

Inverses for 2×2 matrices, ctd.

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Example

Let $B=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$. Is B invertible? We compute the determinant:
$(1)(2)-(2)(1)=0$. The determinant is 0 , so B is not invertible.

Inverses for 2×2 matrices, ctd.

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Example

Let $B=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$. Is B invertible? We compute the determinant:
$(1)(2)-(2)(1)=0$. The determinant is 0 , so B is not invertible.
Example
Let $A=\left[\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right]$.

Inverses for 2×2 matrices, ctd.

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Example

Let $B=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$. Is B invertible? We compute the determinant:
$(1)(2)-(2)(1)=0$. The determinant is 0 , so B is not invertible.

Example

Let $A=\left[\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right]$. Compute the determinant: $(5)(1)-(2)(2)=1$.
So A is invertible.

Inverses for 2×2 matrices, ctd.

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Example

Let $B=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$. Is B invertible? We compute the determinant:
$(1)(2)-(2)(1)=0$. The determinant is 0 , so B is not invertible.

Example

Let $A=\left[\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right]$. Compute the determinant: $(5)(1)-(2)(2)=1$. So A is invertible. We have $A^{-1}=\frac{1}{1}\left[\begin{array}{cc}1 & -2 \\ -2 & 5\end{array}\right]=\left[\begin{array}{cc}1 & -2 \\ -2 & 5\end{array}\right]$.

Using inverse matrices to solve equations

You can solve equations with the matrix inverse.

Using inverse matrices to solve equations

You can solve equations with the matrix inverse.

> Theorem
> Let A be an invertible $n \times n$ matrix. Then for each $\mathbf{b} \in \mathbb{R}^{n}$, the equation $A \mathbf{x}=\mathbf{b}$ is consistent and has unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Using inverse matrices to solve equations

You can solve equations with the matrix inverse.

Theorem

Let A be an invertible $n \times n$ matrix. Then for each $\mathbf{b} \in \mathbb{R}^{n}$, the equation $A \mathbf{x}=\mathbf{b}$ is consistent and has unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Proof.

First we show that $A^{-1} \mathbf{b}$ is a solution.

Using inverse matrices to solve equations

You can solve equations with the matrix inverse.

Theorem

Let A be an invertible $n \times n$ matrix. Then for each $\mathbf{b} \in \mathbb{R}^{n}$, the equation $A \mathbf{x}=\mathbf{b}$ is consistent and has unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Proof.

First we show that $A^{-1} \mathbf{b}$ is a solution. Check:
$A\left(A^{-1} \mathbf{b}\right)=\left(A A^{-1}\right) \mathbf{b}$, and $A A^{-1}=I_{n}$. So $A\left(A^{-1} \mathbf{b}\right)=I_{n} \mathbf{b}=\mathbf{b}$.
Thus $\mathbf{x}=A^{-1} \mathbf{b}$ is a solution to $A \mathbf{x}=\mathbf{b}$.

Using inverse matrices to solve equations

You can solve equations with the matrix inverse.

Theorem

Let A be an invertible $n \times n$ matrix. Then for each $\mathbf{b} \in \mathbb{R}^{n}$, the equation $A \mathbf{x}=\mathbf{b}$ is consistent and has unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Proof.

First we show that $A^{-1} \mathbf{b}$ is a solution. Check: $A\left(A^{-1} \mathbf{b}\right)=\left(A A^{-1}\right) \mathbf{b}$, and $A A^{-1}=I_{n}$. So $A\left(A^{-1} \mathbf{b}\right)=I_{n} \mathbf{b}=\mathbf{b}$.
Thus $\mathbf{x}=A^{-1} \mathbf{b}$ is a solution to $A \mathbf{x}=\mathbf{b}$.
If \mathbf{x} is a solution to $A \mathbf{x}=\mathbf{b}$, then multiply both sides of the equation to obtain $A^{-1}(A \mathbf{x})=A^{-1} \mathbf{b}$.

Using inverse matrices to solve equations

You can solve equations with the matrix inverse.

Theorem

Let A be an invertible $n \times n$ matrix. Then for each $\mathbf{b} \in \mathbb{R}^{n}$, the equation $A \mathbf{x}=\mathbf{b}$ is consistent and has unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Proof.

First we show that $A^{-1} \mathbf{b}$ is a solution. Check: $A\left(A^{-1} \mathbf{b}\right)=\left(A A^{-1}\right) \mathbf{b}$, and $A A^{-1}=I_{n}$. So $A\left(A^{-1} \mathbf{b}\right)=I_{n} \mathbf{b}=\mathbf{b}$.
Thus $\mathbf{x}=A^{-1} \mathbf{b}$ is a solution to $A \mathbf{x}=\mathbf{b}$.
If \mathbf{x} is a solution to $A \mathbf{x}=\mathbf{b}$, then multiply both sides of the equation to obtain $A^{-1}(A \mathbf{x})=A^{-1} \mathbf{b}$. Then rearrange and cancel on the left to obtain $\mathbf{x}=A^{-1} \mathbf{b}$

Example: solving systems with inverses

Lets solve

$$
\begin{aligned}
& 3 x+y=11 \\
& 3 x+2 y=5
\end{aligned}
$$

using inverses of matrices.

Example: solving systems with inverses

Lets solve

$$
\begin{aligned}
& 3 x+y=11 \\
& 3 x+2 y=5
\end{aligned}
$$

using inverses of matrices. This is equivalent to solving $A \mathbf{x}=\mathbf{b}$,
where $A=\left[\begin{array}{ll}3 & 1 \\ 3 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}11 \\ 5\end{array}\right]$.

Example: solving systems with inverses

Lets solve

$$
\begin{aligned}
& 3 x+y=11 \\
& 3 x+2 y=5
\end{aligned}
$$

using inverses of matrices. This is equivalent to solving $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{ll}3 & 1 \\ 3 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}11 \\ 5\end{array}\right]$. The determinant of A is $(3)(2)-(3)=3$.

Example: solving systems with inverses

Lets solve

$$
\begin{aligned}
& 3 x+y=11 \\
& 3 x+2 y=5
\end{aligned}
$$

using inverses of matrices. This is equivalent to solving $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{ll}3 & 1 \\ 3 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}11 \\ 5\end{array}\right]$. The determinant of A is $(3)(2)-(3)=3$. Thus $A^{-1}=\frac{1}{3}\left[\begin{array}{cc}2 & -1 \\ -3 & 3\end{array}\right]=\left[\begin{array}{cc}2 / 3 & -1 / 3 \\ -1 & 1\end{array}\right]$.

Example: solving systems with inverses

Lets solve

$$
\begin{aligned}
& 3 x+y=11 \\
& 3 x+2 y=5
\end{aligned}
$$

using inverses of matrices. This is equivalent to solving $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{ll}3 & 1 \\ 3 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}11 \\ 5\end{array}\right]$. The determinant of A is $(3)(2)-(3)=3$. Thus $A^{-1}=\frac{1}{3}\left[\begin{array}{cc}2 & -1 \\ -3 & 3\end{array}\right]=\left[\begin{array}{cc}2 / 3 & -1 / 3 \\ -1 & 1\end{array}\right]$.
Thus the solution \mathbf{x} to the above equation is
$\mathbf{x}=A^{-1} \mathbf{b}$

Example: solving systems with inverses

Lets solve

$$
\begin{aligned}
& 3 x+y=11 \\
& 3 x+2 y=5
\end{aligned}
$$

using inverses of matrices. This is equivalent to solving $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{ll}3 & 1 \\ 3 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}11 \\ 5\end{array}\right]$. The determinant of A is $(3)(2)-(3)=3$. Thus $A^{-1}=\frac{1}{3}\left[\begin{array}{cc}2 & -1 \\ -3 & 3\end{array}\right]=\left[\begin{array}{cc}2 / 3 & -1 / 3 \\ -1 & 1\end{array}\right]$.
Thus the solution \mathbf{x} to the above equation is
$\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{cc}2 / 3 & -1 / 3 \\ -1 & 1\end{array}\right]\left[\begin{array}{c}11 \\ 5\end{array}\right]$

Example: solving systems with inverses

Lets solve

$$
\begin{aligned}
& 3 x+y=11 \\
& 3 x+2 y=5
\end{aligned}
$$

using inverses of matrices. This is equivalent to solving $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{ll}3 & 1 \\ 3 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}11 \\ 5\end{array}\right]$. The determinant of A is $(3)(2)-(3)=3$. Thus $A^{-1}=\frac{1}{3}\left[\begin{array}{cc}2 & -1 \\ -3 & 3\end{array}\right]=\left[\begin{array}{cc}2 / 3 & -1 / 3 \\ -1 & 1\end{array}\right]$.
Thus the solution \mathbf{x} to the above equation is
$\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{cc}2 / 3 & -1 / 3 \\ -1 & 1\end{array}\right]\left[\begin{array}{c}11 \\ 5\end{array}\right]=\left[\begin{array}{c}22 / 3-5 / 3 \\ -11+5\end{array}\right]$

Example: solving systems with inverses

Lets solve

$$
\begin{aligned}
& 3 x+y=11 \\
& 3 x+2 y=5
\end{aligned}
$$

using inverses of matrices. This is equivalent to solving $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{ll}3 & 1 \\ 3 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}11 \\ 5\end{array}\right]$. The determinant of A is $(3)(2)-(3)=3$. Thus $A^{-1}=\frac{1}{3}\left[\begin{array}{cc}2 & -1 \\ -3 & 3\end{array}\right]=\left[\begin{array}{cc}2 / 3 & -1 / 3 \\ -1 & 1\end{array}\right]$.
Thus the solution \mathbf{x} to the above equation is
$\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{cc}2 / 3 & -1 / 3 \\ -1 & 1\end{array}\right]\left[\begin{array}{c}11 \\ 5\end{array}\right]=\left[\begin{array}{c}22 / 3-5 / 3 \\ -11+5\end{array}\right]=\left[\begin{array}{c}17 / 3 \\ -6\end{array}\right]$.

Example: solving systems with inverses

Lets solve

$$
\begin{aligned}
& 3 x+y=11 \\
& 3 x+2 y=5
\end{aligned}
$$

using inverses of matrices. This is equivalent to solving $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{ll}3 & 1 \\ 3 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}11 \\ 5\end{array}\right]$. The determinant of A is
$(3)(2)-(3)=3$. Thus $A^{-1}=\frac{1}{3}\left[\begin{array}{cc}2 & -1 \\ -3 & 3\end{array}\right]=\left[\begin{array}{cc}2 / 3 & -1 / 3 \\ -1 & 1\end{array}\right]$.
Thus the solution \mathbf{x} to the above equation is
$\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{cc}2 / 3 & -1 / 3 \\ -1 & 1\end{array}\right]\left[\begin{array}{c}11 \\ 5\end{array}\right]=\left[\begin{array}{c}22 / 3-5 / 3 \\ -11+5\end{array}\right]=\left[\begin{array}{c}17 / 3 \\ -6\end{array}\right]$.
Thus the unique solution is $\mathbf{x}=\left[\begin{array}{c}17 / 3 \\ -6\end{array}\right]$.

Example: solving systems with inverses

Lets solve

$$
\begin{aligned}
& 3 x+y=11 \\
& 3 x+2 y=5
\end{aligned}
$$

using inverses of matrices. This is equivalent to solving $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{ll}3 & 1 \\ 3 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}11 \\ 5\end{array}\right]$. The determinant of A is
$(3)(2)-(3)=3$. Thus $A^{-1}=\frac{1}{3}\left[\begin{array}{cc}2 & -1 \\ -3 & 3\end{array}\right]=\left[\begin{array}{cc}2 / 3 & -1 / 3 \\ -1 & 1\end{array}\right]$.
Thus the solution \mathbf{x} to the above equation is
$\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{cc}2 / 3 & -1 / 3 \\ -1 & 1\end{array}\right]\left[\begin{array}{c}11 \\ 5\end{array}\right]=\left[\begin{array}{c}22 / 3-5 / 3 \\ -11+5\end{array}\right]=\left[\begin{array}{c}17 / 3 \\ -6\end{array}\right]$.
Thus the unique solution is $\mathbf{x}=\left[\begin{array}{c}17 / 3 \\ -6\end{array}\right]$. So $x=17 / 3$ and $y=-6$.

Properties of invertible matrices

Properties of invertible matrices

Theorem

(1) If A is an invertible matrix, then A^{-1} is also invertible, and the inverse of A^{-1} is A.

Properties of invertible matrices

Theorem

(1) If A is an invertible matrix, then A^{-1} is also invertible, and the inverse of A^{-1} is A.
(2) If A and B are $n \times n$ invertible matrices, then so is $A B$, and the inverse of $A B$ is $B^{-1} A^{-1}$ [Similar to the formula for the transpose of a product]

Properties of invertible matrices

Theorem

(1) If A is an invertible matrix, then A^{-1} is also invertible, and the inverse of A^{-1} is A.
(2) If A and B are $n \times n$ invertible matrices, then so is $A B$, and the inverse of $A B$ is $B^{-1} A^{-1}$ [Similar to the formula for the transpose of a product]
(3) The transpose of an invertible matrix is invertible, and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

Properties of invertible matrices

Theorem

(1) If A is an invertible matrix, then A^{-1} is also invertible, and the inverse of A^{-1} is A.
(2) If A and B are $n \times n$ invertible matrices, then so is $A B$, and the inverse of $A B$ is $B^{-1} A^{-1}$ [Similar to the formula for the transpose of a product]
(3) The transpose of an invertible matrix is invertible, and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

Proof.

Proof in the book is uncomplicated but you should read it. You really only need associativity of matrix multiplication, the fact that $I_{n} A=A=A I_{n}$ for $n \times n$ matrices, and properties of the transpose.

Properties of invertible matrices

Theorem

(1) If A is an invertible matrix, then A^{-1} is also invertible, and the inverse of A^{-1} is A.
(2) If A and B are $n \times n$ invertible matrices, then so is $A B$, and the inverse of $A B$ is $B^{-1} A^{-1}$ [Similar to the formula for the transpose of a product]
(3) The transpose of an invertible matrix is invertible, and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

Proof.

Proof in the book is uncomplicated but you should read it. You really only need associativity of matrix multiplication, the fact that $I_{n} A=A=A I_{n}$ for $n \times n$ matrices, and properties of the transpose.

In general, if $A_{1}, A_{2}, \ldots, A_{k}$ are a bunch of invertible $n \times n$ matrices then so is $A_{1} A_{2} \quad A_{1}$ and $\left(A_{1} A_{2} \quad A_{\mu}\right)^{-1}=A^{-1} \quad A^{-1} A^{\equiv 1}$

Elementary matrices and row operations

Recall the elementary row operations: interchange, replacement, scaling.

Elementary matrices and row operations

Recall the elementary row operations: interchange, replacement, scaling. We want to reformulate them so that performing an elementary row operation on the square matrix A is the same as taking the product $E A$ by some invertible matrix E. This will allow us effective computation of matrix inverses.

Elementary matrices and row operations

Recall the elementary row operations: interchange, replacement, scaling. We want to reformulate them so that performing an elementary row operation on the square matrix A is the same as taking the product $E A$ by some invertible matrix E. This will allow us effective computation of matrix inverses.

Definition

An elementary matrix is a matrix obtained by performing an elementary row operation on an identity matrix.

Elementary matrices and row operations

Recall the elementary row operations: interchange, replacement, scaling. We want to reformulate them so that performing an elementary row operation on the square matrix A is the same as taking the product $E A$ by some invertible matrix E. This will allow us effective computation of matrix inverses.

Definition

An elementary matrix is a matrix obtained by performing an elementary row operation on an identity matrix.

Example

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Elementary matrices and row operations

Recall the elementary row operations: interchange, replacement, scaling. We want to reformulate them so that performing an elementary row operation on the square matrix A is the same as taking the product $E A$ by some invertible matrix E. This will allow us effective computation of matrix inverses.

Definition

An elementary matrix is a matrix obtained by performing an elementary row operation on an identity matrix.

Example

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Elementary matrices and row operations

Recall the elementary row operations: interchange, replacement, scaling. We want to reformulate them so that performing an elementary row operation on the square matrix A is the same as taking the product $E A$ by some invertible matrix E. This will allow us effective computation of matrix inverses.

Definition

An elementary matrix is a matrix obtained by performing an elementary row operation on an identity matrix.

Example

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

Elementary matrices and row operations

Recall the elementary row operations: interchange, replacement, scaling. We want to reformulate them so that performing an elementary row operation on the square matrix A is the same as taking the product $E A$ by some invertible matrix E. This will allow us effective computation of matrix inverses.

Definition

An elementary matrix is a matrix obtained by performing an elementary row operation on an identity matrix.

Example

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

are all elementary matrices.

Elementary matrices are invertible

Remember that the elementary row operations can be reversed:

Elementary matrices are invertible

Remember that the elementary row operations can be reversed:
(1) interchanging rows i_{1} and i_{2} is reversed by interchanging the rows again.

Elementary matrices are invertible

Remember that the elementary row operations can be reversed:
(1) interchanging rows i_{1} and i_{2} is reversed by interchanging the rows again.
(2) scaling a row by c is reversed by scaling the same row by $\frac{1}{c}$

Elementary matrices are invertible

Remember that the elementary row operations can be reversed:
(1) interchanging rows i_{1} and i_{2} is reversed by interchanging the rows again.
(2) scaling a row by c is reversed by scaling the same row by $\frac{1}{c}$
(3) replacing row i_{1} with c times row i_{2} is reversed by subtracting c times row i_{2} from row i_{1}

Elementary matrices are invertible

Remember that the elementary row operations can be reversed:
(1) interchanging rows i_{1} and i_{2} is reversed by interchanging the rows again.
(2) scaling a row by c is reversed by scaling the same row by $\frac{1}{c}$
(3) replacing row i_{1} with c times row i_{2} is reversed by subtracting c times row i_{2} from row i_{1}
This gives us that every elementary matrix E corresponding to a row operation is invertible, and E^{-1} is the elementary matrix corresponding to the reverse elementary row operation.

Elementry matrices are invertible

Example

Let $E=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$. Then E is the elementary matrix corresponding to the row operation "add 5 times the first row to the second row."

Example

Let $E=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$. Then E is the elementary matrix corresponding to the row operation "add 5 times the first row to the second row." Then its inverse is the elementary matrix corresponding to the row operation "subtract 5 times the first row from the second row."

Example

Let $E=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$. Then E is the elementary matrix corresponding to the row operation "add 5 times the first row to the second row." Then its inverse is the elementary matrix corresponding to the row operation "subtract 5 times the first row from the second row." That is,

$$
E^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-5 & 1
\end{array}\right]
$$

Elementary matrices in action

Example

Let E_{1} be the elementary matrix obtained by adding the first row of I_{2} to its second row.

$$
E_{1}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

Elementary matrices in action

Example

Let E_{1} be the elementary matrix obtained by adding the first row of I_{2} to its second row.

$$
E_{1}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

Then for any 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ we have

Elementary matrices in action

Example

Let E_{1} be the elementary matrix obtained by adding the first row of I_{2} to its second row.

$$
E_{1}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

Then for any 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ we have
$E_{1} A$

Elementary matrices in action

Example

Let E_{1} be the elementary matrix obtained by adding the first row of I_{2} to its second row.

$$
E_{1}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

Then for any 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ we have

$$
E_{1} A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Elementary matrices in action

Example

Let E_{1} be the elementary matrix obtained by adding the first row of I_{2} to its second row.

$$
E_{1}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

Then for any 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ we have

$$
E_{1} A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
a+c & b+d
\end{array}\right]
$$

Invertibility and elementary row ops.

Theorem

Let A be an $n \times n$ matrix. Then A is invertible if and only if A is row equivalent to I_{n}, and any sequence of row operations that transforms A into I applied in the same order to I transforms I into A^{-1}.

Invertibility and elementary row ops.

Theorem

Let A be an $n \times n$ matrix. Then A is invertible if and only if A is row equivalent to I_{n}, and any sequence of row operations that transforms A into I applied in the same order to I transforms I into A^{-1}. Put another way, if $E_{1}, E_{2}, \ldots, E_{k}$ are the elementary matrices corresponding to the row operations transforming A into I, so that

$$
E_{1} E_{2} \ldots E_{k} A=I
$$

Invertibility and elementary row ops.

Theorem

Let A be an $n \times n$ matrix. Then A is invertible if and only if A is row equivalent to I_{n}, and any sequence of row operations that transforms A into I applied in the same order to I transforms I into A^{-1}. Put another way, if $E_{1}, E_{2}, \ldots, E_{k}$ are the elementary matrices corresponding to the row operations transforming A into I, so that

$$
E_{1} E_{2} \ldots E_{k} A=I
$$

then we necessarily have that

$$
E_{1} E_{2} \ldots E_{k} I=E_{1} \ldots E_{k}=A^{-1}
$$

Matrix inversion algorithm

Matrix inversion algorithm

The theorem in the preceding slide tells us how to compute the inverse of any invertible matrix, and it encodes a way to check if an $n \times n$ matrix is invertible, all through row reduction.

Matrix inversion algorithm

The theorem in the preceding slide tells us how to compute the inverse of any invertible matrix, and it encodes a way to check if an $n \times n$ matrix is invertible, all through row reduction.

Fact

Let A be an $n \times n$ matrix and form the augmented matrix

$$
\begin{array}{cc}
{[A} & \left.I_{n}\right] .
\end{array}
$$

Row reduce this matrix as usual. If the reduced echelon form looks like

$$
\begin{array}{cc}
{\left[I_{n}\right.} & C]
\end{array}
$$

then A is invertible and $C=A^{-1}$.

Matrix inversion algorithm

The theorem in the preceding slide tells us how to compute the inverse of any invertible matrix, and it encodes a way to check if an $n \times n$ matrix is invertible, all through row reduction.

Fact

Let A be an $n \times n$ matrix and form the augmented matrix

$$
\begin{array}{cc}
{[A} & \left.I_{n}\right]
\end{array}
$$

Row reduce this matrix as usual. If the reduced echelon form looks like

$$
\begin{array}{cc}
{\left[I_{n}\right.} & C]
\end{array}
$$

then A is invertible and $C=A^{-1}$. If the reduced echelon form looks any other way, then A is not invertible (in fact, you can decide if A is invertible just by transforming to echelon form and seeing if there are any rows that have $n 0 s$ in the left half.

Example of MIA

Let's find determine if the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1\end{array}\right]$ is invertible and find its inverse, if possible. Form the augmented system

$$
\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
3 & 1 & 2 & 0 & 1 & 0 \\
2 & 3 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Ex. of MIA, pt. II

$$
\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
3 & 1 & 2 & 0 & 1 & 0 \\
2 & 3 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Ex. of MIA, pt. II

$$
\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
3 & 1 & 2 & 0 & 1 & 0 \\
2 & 3 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & -5 & -7 & -3 & 1 & 0 \\
0 & -1 & -5 & -2 & 0 & 1
\end{array}\right]
$$

Ex. of MIA, pt. II

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
3 & 1 & 2 & 0 & 1 & 0 \\
2 & 3 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & -5 & -7 & -3 & 1 & 0 \\
0 & -1 & -5 & -2 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & -5 & -7 & -3 & 1 & 0 \\
0 & -1 & -5 & -2 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

$$
\left.\left.\left.\begin{array}{c}
{\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
3 & 1 & 2 & 0 & 1 & 0 \\
2 & 3 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 2 & 3 & 1 & 0 \\
0 \\
0 & -5 & -7 & -3 & 1
\end{array} 0\right.} \\
0 \\
-1
\end{array}-5\right)-2 \text { 0 } 1\right] ~\right] ~\left(\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & -5 & -7 & -3 & 1 & 0 \\
0 & -1 & -5 & -2 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 5 & 2 & 0 & -1 \\
0 & -5 & -7 & -3 & 1 & 0
\end{array}\right] .
$$

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
3 & 1 & 2 & 0 & 1 & 0 \\
2 & 3 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 2 & 3 & 1 & 0 \\
0 \\
0 & -5 & -7 & -3 & 1 \\
0 \\
0 & -1 & -5 & -2 & 0 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & -5 & -7 & -3 & 1 & 0 \\
0 & -1 & -5 & -2 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 5 & 2 & 0 & -1 \\
0 & -5 & -7 & -3 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 5 & 2 & 0 & -1 \\
0 & -5 & -7 & -3 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

$$
\left.\begin{array}{c}
{\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
3 & 1 & 2 & 0 & 1 & 0 \\
2 & 3 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 2 & 3 & 1 & 0 \\
0 \\
0 & -5 & -7 & -3 & 1 \\
0 \\
0 & -1 & -5 & -2 & 0
\end{array}\right]}
\end{array}\right]
$$

Now we can pause at echelon form to say that there are no bad rows.

We keep row reducing the entire augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 5 & 2 & 0 & -1 \\
0 & 0 & 18 & 7 & 1 & -5
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 5 & 2 & 0 & -1 \\
0 & 0 & 1 & 7 / 18 & 1 / 18 & -5 / 18
\end{array}\right]} \\
& {\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 5 & 2 & 0 & -1 \\
0 & 0 & 1 & \frac{7}{18} & \frac{1}{18} & \frac{-5}{18}
\end{array}\right]}
\end{aligned}
$$

We keep row reducing the entire augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 5 & 2 & 0 & -1 \\
0 & 0 & 18 & 7 & 1 & -5
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 5 & 2 & 0 & -1 \\
0 & 0 & 1 & 7 / 18 & 1 / 18 & -5 / 18
\end{array}\right]} \\
& {\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 5 & 2 & 0 & -1 \\
0 & 0 & 1 & \frac{7}{18} & \frac{1}{18} & \frac{-5}{18}
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 2 & 0 & -3 / 18 & -3 / 18 & 15 / 18 \\
0 & 1 & 0 & 1 / 18 & -5 / 18 & 7 / 18 \\
0 & 0 & 1 & 7 / 18 & 1 / 18 & -5 / 18
\end{array}\right]} \\
& {\left[\begin{array}{cccccc}
1 & 2 & 0 & -\frac{3}{18} & \frac{-3}{18} & \frac{15}{18} \\
0 & 1 & 0 & \frac{1}{18} & \frac{-5}{18} & \frac{-13}{9} \\
0 & 0 & 1 & \frac{7}{18} & \frac{1}{18} & \frac{-5}{18}
\end{array}\right]}
\end{aligned}
$$

We keep row reducing the entire augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 5 & 2 & 0 & -1 \\
0 & 0 & 18 & 7 & 1 & -5
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 5 & 2 & 0 & -1 \\
0 & 0 & 1 & 7 / 18 & 1 / 18 & -5 / 18
\end{array}\right]} \\
& {\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 5 & 2 & 0 & -1 \\
0 & 0 & 1 & \frac{7}{18} & \frac{1}{18} & \frac{-5}{18}
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 2 & 0 & -3 / 18 & -3 / 18 & 15 / 18 \\
0 & 1 & 0 & 1 / 18 & -5 / 18 & 7 / 18 \\
0 & 0 & 1 & 7 / 18 & 1 / 18 & -5 / 18
\end{array}\right]} \\
& {\left[\begin{array}{cccccccc}
1 & 2 & 0 & -\frac{3}{18} & \frac{-3}{18} & \frac{15}{18} \\
0 & 1 & 0 & \frac{1}{18} & \frac{-5}{18} & \frac{-13}{9} \\
0 & 0 & 1 & \frac{7}{18} & \frac{1}{18} & \frac{-5}{18}
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & -5 / 18 & 7 / 8 & 1 / 18 \\
0 & 1 & 0 & 1 / 18 & -5 / 18 & 7 / 18 \\
0 & 0 & 1 & 7 / 18 & 1 / 18 & -5 / 18
\end{array}\right.}
\end{aligned}
$$

This is in reduced echelon form.

We keep row reducing the entire augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 5 & 2 & 0 & -1 \\
0 & 0 & 18 & 7 & 1 & -5
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 5 & 2 & 0 & -1 \\
0 & 0 & 1 & 7 / 18 & 1 / 18 & -5 / 18
\end{array}\right]} \\
& {\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 5 & 2 & 0 & -1 \\
0 & 0 & 1 & \frac{7}{18} & \frac{1}{18} & \frac{-5}{18}
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 2 & 0 & -3 / 18 & -3 / 18 & 15 / 18 \\
0 & 1 & 0 & 1 / 18 & -5 / 18 & 7 / 18 \\
0 & 0 & 1 & 7 / 18 & 1 / 18 & -5 / 18
\end{array}\right]} \\
& {\left[\begin{array}{cccccccc}
1 & 2 & 0 & -\frac{3}{18} & \frac{-3}{18} & \frac{15}{18} \\
0 & 1 & 0 & \frac{1}{18} & \frac{-5}{18} & \frac{-13}{9} \\
0 & 0 & 1 & \frac{7}{18} & \frac{1}{18} & \frac{-5}{18}
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & -5 / 18 & 7 / 8 & 1 / 18 \\
0 & 1 & 0 & 1 / 18 & -5 / 18 & 7 / 18 \\
0 & 0 & 1 & 7 / 18 & 1 / 18 & -5 / 18
\end{array}\right.}
\end{aligned}
$$

This is in reduced echelon form. The right half of the augmented matrix is the inverse of A.

We computed that

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2 \\
2 & 3 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
-5 / 18 & 7 / 18 & 1 / 18 \\
1 / 18 & -5 / 18 & 7 / 18 \\
7 / 18 & 1 / 18 & -5 / 18
\end{array}\right]
$$

We computed that

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2 \\
2 & 3 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
-5 / 18 & 7 / 18 & 1 / 18 \\
1 / 18 & -5 / 18 & 7 / 18 \\
7 / 18 & 1 / 18 & -5 / 18
\end{array}\right]
$$

If you multiply the two matrices you get the identity

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2 \\
2 & 3 & 1
\end{array}\right]\left[\begin{array}{ccc}
-5 / 18 & 7 / 18 & 1 / 18 \\
1 / 18 & -5 / 18 & 7 / 18 \\
7 / 18 & 1 / 18 & -5 / 18
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

When is a matrix invertible?

We have seen that a matrix is invertible if you can reduce it to the identity matrix via row operations. This description is not complete enough for our purposes-we don't always want to have to run the row reduction algorithm every time.

Theorem (The Invertible Matrix Theorem)

If A is an $n \times n$ matrix then the following are equivalent:
(1) A is invertible

Theorem (The Invertible Matrix Theorem)

If A is an $n \times n$ matrix then the following are equivalent:
(1) A is invertible
(2) A is row equivalent to I_{n}

Theorem (The Invertible Matrix Theorem)

If A is an $n \times n$ matrix then the following are equivalent:
(1) A is invertible
(2) A is row equivalent to I_{n}
(3) A has n pivot columns

Theorem (The Invertible Matrix Theorem)

If A is an $n \times n$ matrix then the following are equivalent:
(1) A is invertible
(2) A is row equivalent to I_{n}
(3) A has n pivot columns
(4) the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution

Theorem (The Invertible Matrix Theorem)

If A is an $n \times n$ matrix then the following are equivalent:
(1) A is invertible
(2) A is row equivalent to I_{n}
(3) A has n pivot columns
(1) the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution
(9) the columns of A form a linearly independent set

Theorem (The Invertible Matrix Theorem)

If A is an $n \times n$ matrix then the following are equivalent:
(1) A is invertible
(2) A is row equivalent to I_{n}
(3) A has n pivot columns
(1) the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution
(3) the columns of A form a linearly independent set
(0) the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one

Theorem (The Invertible Matrix Theorem)

If A is an $n \times n$ matrix then the following are equivalent:
(1) A is invertible
(2) A is row equivalent to I_{n}
(3) A has n pivot columns
(1) the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution
(0) the columns of A form a linearly independent set
(0) the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one
(1) the equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^{n}$

Theorem (The Invertible Matrix Theorem)

If A is an $n \times n$ matrix then the following are equivalent:
(1) A is invertible
(2) A is row equivalent to I_{n}
(3) A has n pivot columns
(1) the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution
(3) the columns of A form a linearly independent set
(0) the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one
(1) the equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^{n}$
(8) the columns of A span \mathbb{R}^{n}

Theorem (The Invertible Matrix Theorem)

If A is an $n \times n$ matrix then the following are equivalent:
(1) A is invertible
(2) A is row equivalent to I_{n}
(3) A has n pivot columns
(1) the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution
(3) the columns of A form a linearly independent set
(0) the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one
(1) the equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^{n}$
(8) the columns of A span \mathbb{R}^{n}
(0) the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}

Theorem (The Invertible Matrix Theorem)

If A is an $n \times n$ matrix then the following are equivalent:
(1) A is invertible
(2) A is row equivalent to I_{n}
(3) A has n pivot columns
(1) the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution
(0) the columns of A form a linearly independent set
(0) the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one
(1) the equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^{n}$
(8) the columns of A span \mathbb{R}^{n}
(0) the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}
(10) there is an $n \times n$ matrix C such that $C A=I_{n}$

Theorem (The Invertible Matrix Theorem)

If A is an $n \times n$ matrix then the following are equivalent:
(1) A is invertible
(2) A is row equivalent to I_{n}
(3) A has n pivot columns
(1) the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution
(0) the columns of A form a linearly independent set
(0) the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one
(1) the equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^{n}$
(8) the columns of A span \mathbb{R}^{n}
(0) the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}
(10) there is an $n \times n$ matrix C such that $C A=I_{n}$
(1) there is an $n \times n$ matrix D such that $A D=I_{n}$

Theorem (The Invertible Matrix Theorem)

If A is an $n \times n$ matrix then the following are equivalent:
(1) A is invertible
(2) A is row equivalent to I_{n}
(3) A has n pivot columns
(1) the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution
(3) the columns of A form a linearly independent set
(0) the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one
(1) the equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^{n}$
(8) the columns of A span \mathbb{R}^{n}
(0) the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}
(10) there is an $n \times n$ matrix C such that $C A=I_{n}$
(1) there is an $n \times n$ matrix D such that $A D=I_{n}$
(12) A^{T} is invertible

Proving the IMT: 1 implies 2 implies 3 implies 4 implies 5

If A is invertible then A is row equivalent to I_{n} by the previous section. So (1) implies (2).

Proving the IMT: 1 implies 2 implies 3 implies 4 implies 5

If A is invertible then A is row equivalent to I_{n} by the previous section. So (1) implies (2). If A is row-equivalent to I_{n}, then the row-operations that transform A to I_{n} actually transform A into reduced echelon form. Since I_{n} has no non-pivot columns, A has no non-pivot columns. So (2) implies (3)

Proving the IMT: 1 implies 2 implies 3 implies 4 implies 5

If A is invertible then A is row equivalent to I_{n} by the previous section. So (1) implies (2). If A is row-equivalent to I_{n}, then the row-operations that transform A to I_{n} actually transform A into reduced echelon form. Since I_{n} has no non-pivot columns, A has no non-pivot columns. So (2) implies (3) Suppose A has n pivot columns. If we augment A with $\mathbf{0}$ and row-reduce, there are no free variables. Thus $A \mathbf{x}=\mathbf{0}$ has only the trivial solution. So (3) implies (4)

Proving the IMT: 1 implies 2 implies 3 implies 4 implies 5

If A is invertible then A is row equivalent to I_{n} by the previous section. So (1) implies (2). If A is row-equivalent to I_{n}, then the row-operations that transform A to I_{n} actually transform A into reduced echelon form. Since I_{n} has no non-pivot columns, A has no non-pivot columns. So (2) implies (3) Suppose A has n pivot columns. If we augment A with $\mathbf{0}$ and row-reduce, there are no free variables. Thus $A \mathbf{x}=\mathbf{0}$ has only the trivial solution. So (3) implies (4) Any linear dependence relation among the columns of A gives a non-trivial solution to $A \mathbf{x}=\mathbf{0}$. Thus (4) implies (5).

Application of the IMT

We can use the IMT to check if things are non-invertible really easily.

Application of the IMT

We can use the IMT to check if things are non-invertible really easily.

Example
Let $A=\left[\begin{array}{llll}1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 4 \\ 3 & 0 & 2 & 6 \\ 4 & 1 & 3 & 8\end{array}\right]$.

Application of the IMT

We can use the IMT to check if things are non-invertible really easily.

Example
Let $A=\left[\begin{array}{llll}1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 4 \\ 3 & 0 & 2 & 6 \\ 4 & 1 & 3 & 8\end{array}\right]$. Let's see if A is invertible without row reduction.

Application of the IMT

We can use the IMT to check if things are non-invertible really easily.

Example

Let $A=\left[\begin{array}{llll}1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 4 \\ 3 & 0 & 2 & 6 \\ 4 & 1 & 3 & 8\end{array}\right]$. Let's see if A is invertible without row
reduction. There's a whole bunch of ways to check, but one that is nice is: if A has linearly dependent columns, then A is not invertible.

Application of the IMT

We can use the IMT to check if things are non-invertible really easily.

Example

Let $A=\left[\begin{array}{llll}1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 4 \\ 3 & 0 & 2 & 6 \\ 4 & 1 & 3 & 8\end{array}\right]$. Let's see if A is invertible without row reduction. There's a whole bunch of ways to check, but one that is nice is: if A has linearly dependent columns, then A is not invertible. We note that the fourth column of A is 2 times the first column of A.

Application of the IMT

We can use the IMT to check if things are non-invertible really easily.

Example

Let $A=\left[\begin{array}{llll}1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 4 \\ 3 & 0 & 2 & 6 \\ 4 & 1 & 3 & 8\end{array}\right]$. Let's see if A is invertible without row reduction. There's a whole bunch of ways to check, but one that is nice is: if A has linearly dependent columns, then A is not invertible. We note that the fourth column of A is 2 times the first column of A. Thus the columns of A are linearly dependent, so A is not invertible by the IMT.

Invertible maps

Definition

A function $f: X \rightarrow Y$ is called invertible (or bijective) if there is a map $g: Y \rightarrow X$ such that $f(g(y))=y$ for all $y \in Y$ and $g(f(x))=x$ for all $x \in X$. If such a g exists, it is called the inverse of f.

Invertible maps

Definition

A function $f: X \rightarrow Y$ is called invertible (or bijective) if there is a map $g: Y \rightarrow X$ such that $f(g(y))=y$ for all $y \in Y$ and $g(f(x))=x$ for all $x \in X$. If such a g exists, it is called the inverse of f.

When is a linear transformation T given by $\mathbf{x} \mapsto A \mathbf{x}$ invertible?

Invertible maps

Definition

A function $f: X \rightarrow Y$ is called invertible (or bijective) if there is a map $g: Y \rightarrow X$ such that $f(g(y))=y$ for all $y \in Y$ and $g(f(x))=x$ for all $x \in X$. If such a g exists, it is called the inverse of f.

When is a linear transformation T given by $\mathbf{x} \mapsto A \mathbf{x}$ invertible?
Precisely when A is an invertible matrix.

Theorem
 Let A be $n \times n$ and let T be the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$.

[^0]
Theorem

Let A be $n \times n$ and let T be the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$. Then T is invertible if and only if A is invertible.

Proof.

Suppose that A is invertible. Define $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $S(\mathbf{x})=A^{-1} \mathbf{x}$.

Theorem

Let A be $n \times n$ and let T be the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$. Then T is invertible if and only if A is invertible.

Proof.

Suppose that A is invertible. Define $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $S(\mathbf{x})=A^{-1} \mathbf{x}$. Then $T(S(\mathbf{x}))=A A^{-1}(\mathbf{x})=\mathbf{x}$ and $S(T(\mathbf{x}))=\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$.

Theorem

Let A be $n \times n$ and let T be the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$. Then T is invertible if and only if A is invertible.

Proof.

Suppose that A is invertible. Define $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $S(\mathbf{x})=A^{-1} \mathbf{x}$. Then $T(S(\mathbf{x}))=A A^{-1}(\mathbf{x})=\mathbf{x}$ and $S(T(\mathbf{x}))=\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Suppose that T is invertible with inverse S. We show that $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Theorem

Let A be $n \times n$ and let T be the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$. Then T is invertible if and only if A is invertible.

Proof.

Suppose that A is invertible. Define $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $S(\mathbf{x})=A^{-1} \mathbf{x}$. Then $T(S(\mathbf{x}))=A A^{-1}(\mathbf{x})=\mathbf{x}$ and $S(T(\mathbf{x}))=\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Suppose that T is invertible with inverse S. We show that $A \mathbf{x}=\mathbf{0}$ has only the trivial solution. If $T(\mathbf{x})=T(\mathbf{0})$ then $S(T(\mathbf{x}))=S(T(\mathbf{0}))$. But S is the inverse of T, so $\mathbf{x}=\mathbf{0}$. Thus the only solution to $A \mathbf{x}=\mathbf{0}$ is the trivial solution. The IMT tells us that A is invertible.

[^0]: Theorem
 Let A be $n \times n$ and let T be the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$. Then T is invertible if and only if A is invertible.

