Definition 1. (i) Let W_1, W_2, \ldots, W_k be subspaces of \mathbb{R}^n for some *n*. The sum of the W_i is

$$\sum_{i=1}^{k} W_i = \{ w_1 + w_2 + \ldots + w_k : w_i \in W_i 1 \le i \le k \}.$$

(ii) \mathbb{R}^n is the *direct sum* of subspaces W_1, W_2, \ldots, W_k if their sum is \mathbb{R}^n and their pairwise intersection is the zero vector (i.e., $W_i \cap W_j = \{\mathbf{0}\}$ for all $i \neq j$).

Lemma 2. Suppose W_1, W_2, \ldots, W_k are subspaces of \mathbb{R}^n such that their sum is \mathbb{R}^n . Then if X_1, X_2, \ldots, X_k are chosen such that for each $i, W_i = \text{Span}(X_i)$, $\bigcup X_i$ spans \mathbb{R}^n .

Lemma 3. Suppose W_1, W_2, \ldots, W_k are subspaces of \mathbb{R}^n such that \mathbb{R}^n is their direct sum. Then if $\mathbf{w}_1, \ldots, \mathbf{w}_k$ are vectors such that each \mathbf{w}_i is an element of W_i and not all the \mathbf{w}_i are $\mathbf{0}$, the sum $\mathbf{w}_1 + \ldots + \mathbf{w}_k$ is also not $\mathbf{0}$. In particular, any set of nonzero vectors, each of which is drawn from a distinct subspace W_i , is linearly independent.

Theorem 4. Let W_1, W_2, \ldots, W_k be subspaces of \mathbb{R}^n that sum to \mathbb{R}^n . Then \mathbb{R}^n is the direct sum of W_1, W_2, \ldots, W_k if and only if the sum of the dimensions of the W_i is n.

Proof.