Definition 1. (i) Let $W_{1}, W_{2}, \ldots, W_{k}$ be subspaces of \mathbb{R}^{n} for some n. The sum of the W_{i} is

$$
\sum_{i=1}^{k} W_{i}=\left\{w_{1}+w_{2}+\ldots+w_{k}: w_{i} \in W_{i} 1 \leq i \leq k\right\}
$$

(ii) \mathbb{R}^{n} is the direct sum of subspaces $W_{1}, W_{2}, \ldots, W_{k}$ if their sum is \mathbb{R}^{n} and their pairwise intersection is the zero vector (i.e., $W_{i} \cap W_{j}=\{\mathbf{0}\}$ for all $i \neq j$).
Lemma 2. Suppose $W_{1}, W_{2}, \ldots, W_{k}$ are subspaces of \mathbb{R}^{n} such that their sum is \mathbb{R}^{n}. Then if $X_{1}, X_{2}, \ldots, X_{k}$ are chosen such that for each $i, W_{i}=\operatorname{Span}\left(X_{i}\right)$, $\bigcup X_{i}$ spans \mathbb{R}^{n}.

Lemma 3. Suppose $W_{1}, W_{2}, \ldots, W_{k}$ are subspaces of \mathbb{R}^{n} such that \mathbb{R}^{n} is their direct sum. Then if $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{k}$ are vectors such that each \boldsymbol{w}_{i} is an element of W_{i} and not all the \boldsymbol{w}_{i} are $\mathbf{0}$, the sum $\boldsymbol{w}_{1}+\ldots+\boldsymbol{w}_{k}$ is also not $\mathbf{0}$. In particular, any set of nonzero vectors, each of which is drawn from a distinct subspace W_{i}, is linearly independent.
Theorem 4. Let $W_{1}, W_{2}, \ldots, W_{k}$ be subspaces of \mathbb{R}^{n} that sum to \mathbb{R}^{n}. Then \mathbb{R}^{n} is the direct sum of $W_{1}, W_{2}, \ldots, W_{k}$ if and only if the sum of the dimensions of the W_{i} is n.

Proof.

