The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent.
a. A is an invertible matrix.
b. A is row equivalent to the $n \times n$ identity matrix.
c. A has n pivot positions.
d. The equation $A \boldsymbol{x}=\mathbf{0}$ has only the trivial solution.
e. The columns of A form a linearly independent set.
f. The linear transformation $\boldsymbol{x} \mapsto A \boldsymbol{x}$ is one-to-one.
g. The equation $A \boldsymbol{x}=\boldsymbol{b}$ has at least one solution for each \boldsymbol{b} in \mathbb{R}^{n}.
h. The columns of A span \mathbb{R}^{n}.
i. The linear transformation $\boldsymbol{x} \mapsto A \boldsymbol{x}$ is onto \mathbb{R}^{n}.
j . There is an $n \times n$ matrix C such that $C A=I_{n}$.
k. There is an $n \times n$ matrix D such that $A D=I_{n}$.

1. A^{T} is an invertible matrix.

Table of equivalences as in margin:

