The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent.

- a. A is an invertible matrix.
- b. A is row equivalent to the $n \times n$ identity matrix. equiv to (a) by $\S2.2$ c. A has n pivot positions. easily shown equiv to (b) d. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. equiv to (c): no free variables e. The columns of A form a linearly independent set. equiv to (d): linearly dep cols \Leftrightarrow nontrivial zeros f. The linear transformation $\boldsymbol{x} \mapsto A\boldsymbol{x}$ is one-to-one. equiv to (d) by $\S1.9$ g. The equation $A\boldsymbol{x} = \boldsymbol{b}$ has at least one solution for equiv to (c) by §1.2 each \boldsymbol{b} in \mathbb{R}^n . h. The columns of A span \mathbb{R}^n . equiv to (g) by def of matrix mult i. The linear transformation $\boldsymbol{x} \mapsto A\boldsymbol{x}$ is onto \mathbb{R}^n . equiv to (h) by $\S1.9$ j. There is an $n \times n$ matrix C such that $CA = I_n$. both (j), (k) equiv to (a) by showing C, D two-sided inverse: eg $C = I_n C = CAC = C(AC),$ k. There is an $n \times n$ matrix D such that $AD = I_n$. so $AC = I_n$ l. A^T is an invertible matrix. equiv to (a) by $\S2.2$

Table of equivalences as in margin: