Exam I Topics
Math 22, Spring 2007

Sections covered: 1.1-1.5, 1.7-1.9, 2.1-2.3 (11)
(1) Terms: linear equation, coefficient, system of linear equations, solution, solution set, equivalent systems, consistent system, inconsistent system
(2) Allowed steps to solve a system of linear equations
(3) How many solutions a system of linear equations may have
(4) Vectors I: equality, sums, scalar multiplication, geometric interpretation, linear combinations and weights, span
(5) Vectors II: linear dependence and independence
(6) Matrices: size, equality, sums, scalar multiplication, standard notation for entries, main diagonal, multiplication by vectors or other matrices
(7) Matrices and linear equations I: coefficient matrix, augmented matrix, elementary row operations, row equivalence, echelon form, reduced echelon form, leading entry, pivot position, pivot column, basic/leading and free variables
(8) Connections between pivots and solutions: Theorem 2 in $\S 1.2$
(9) Matrices and linear equations II: interpreting the matrix equation $A \boldsymbol{x}=\boldsymbol{b}$ in terms of linear combinations and systems of linear equations
(10) Methods of presenting solution sets: general solutions as in $\S 1.2$, parametric descriptions as in $\S 1.5$, homogeneous systems, trivial solution to $A \boldsymbol{x}=\mathbf{0}$, nonhomogeneous systems in terms of homogeneous systems
(11) Linear transformations: domain, codomain, range, image, preimage, matrix transformation, definition of linearity, finding a matrix for a transformation, one-to-one and onto transformations, geometric transformations of \mathbb{R}^{2}, connections to vector properties of the columns of the transformation matrix
(12) Matrix inverses: 2×2 determinant and connection to invertibility and calculation of inverse, inverse of a product, elementary matrix, finding inverses for larger matrices than 2×2, connection to linear transformations, equivalent conditions to invertibility

