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Vector graphics refers to representing images by mathematical
descriptions of geometric objects, rather than by a collection of
pixels on the screen (raster graphics).

Punchline: If we represent points of space in the right way, we can
represent all sorts of motions and deformations of shapes by matrix
multiplication.



Geometrically, we can represent a polygon by a collection of
vertices and the order in which to connect them. This is a lot less
data to store in memory than the collection of all the pixels that
are to be colored, especially as the polygon gets larger.

If we want to represent other shapes, we need to store:

I What kind of shape it is

I Enough points and distances to fully describe the shape

I (if we have this option) The style and color of the outline

I (if we have this option) The style and color of the inside

For example, for a circle we would need to know it was a circle,
then have the center and radius.



Asteroids



Manipulating a Ship

Let’s represent the ship by a triangle, starting with its vertices at
(0, 0), (2, 0), (1, 3).
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We could represent this as a matrix of vertices, with the
understanding (stored as an additional piece of data) that they are
connected in order and the last connects to the first.[

0 2 1
0 0 3

]



A matrix of vertices allows us to represent rotation by matrix
multiplication, but what about translation? If we wanted to move
r units to the right and s units up, we’d have to add:[

0 2 1
0 0 3

]
+

[
r r r
s s s

]
With a simple modification of the vertex matrix, though, we can
represent translation by matrix multiplication using shear
transformations (adds a multiple of one coordinate to each of the
other coordinates). We just add a dummy coordinate that always
holds value 1, and add multiples of that to the x and y coordinates.



Homogeneous Coordinates

In the new scheme, our triangle ship is represented by the matrix 0 2 1
0 0 3
1 1 1


Translation by (r , s) is now the product 1 0 r

0 1 s
0 0 1

 0 2 1
0 0 3
1 1 1

 =

 r 2 + r 1 + r
s s 3 + s
1 1 1





Flying Forward

Suppose we want to fly our ship two units in the direction it is
currently facing (up). We need to translate by (0, 2): 1 0 0

0 1 2
0 0 1

 0 2 1
0 0 3
1 1 1

 =

 0 2 1
2 2 5
1 1 1


The new vertices, (0, 2), (2, 2), (1, 5), give us the new ship image:
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Turning in Place

We’ll crash into an asteroid if we can’t change direction. Let’s find
the images of the columns of I2 under counterclockwise rotation at
an angle of ϕ.
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x2

x1
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[
1
0

]
7→

[
x1

y1

]
=

[
cos ϕ
sin ϕ

]
[

0
1

]
7→

[
x2

y2

]
=

[
− sin ϕ
cos ϕ

]



The first two columns of I3 will do just the same thing, with a zero
in the last place. Our extra coordinate will stay the same. Hence
to obtain counterclockwise rotation by ϕ degrees, we multiply by
the matrix  cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0
0 0 1


For example, for a 90◦ turn to the left, we would compute: 0 −1 0

1 0 0
0 0 1

 0 2 1
0 0 3
1 1 1

 =

 0 0 −3
0 2 1
1 1 1
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That’s not the way ships turn, though! And if we rotate our ship
after it drives up 2 units, it’s even worse:
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Center of Ship vs. Center of Screen

We want our rotation to be about the center of the ship, say, the
point halfway between the front and back ends on the line straight
back from the tip. In our beginning position that is (1, 1.5).
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One solution is to translate, rotate, and translate back: make the
center of the triangle the origin, do the rotation as previously, and
then move the center back where it belongs. If we move everything
by the amount the center requires, everything will stay in its proper
positions.



We multiply on the left by each operation’s matrix in order. Hence
the new vertices are given by A−1BAM where M is the matrix of
homogeneous coordinates, A gives translation by (−1,−1.5), B
rotation by 90◦, and A−1 translation by (1, 1.5).

A−1BA =

 1 0 1
0 1 1.5
0 0 1

 0 −1 0
1 0 0
0 0 1

 1 0 −1
0 1 −1.5
0 0 1



=

 0 −1 2.5
1 0 0.5
0 0 1



(A−1BA)M =

 0 −1 2.5
1 0 0.5
0 0 1

 0 2 1
0 0 3
1 1 1

 =

 2.5 2.5 −0.5
0.5 2.5 1.5
1 1 1





The multiplication claims our vertices after rotation should be at
(2.5, 0.5), (2.5, 2.5), and (−0.5, 1.5). Let’s graph it.
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Much better! The corresponding action for our ship after moving
forward two units involves translating by (−1,−3.5) and back with
the rotation in between. The vertices obtained are (2.5, 2.5),
(2.5, 4.5), and (−0.5, 3.5) (the previous vertices with y + 2).
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Advantages of Vector Graphics

We’ve mentioned that the same amount of data is required to
represent an object of a given shape no matter what its size. Along
those lines, resizing vector objects can be done with perfect quality
maintenance. To go from 4× 6 to 400× 600, you simply multiply
by a dilation matrix and then make the connections as usual. A
raster image must be sharpened if it is blown up too much.

Another advantage is that these are device-independent
descriptions. No matter what kind of screen is going to display the
picture, if you give the vector description to the machine it can
(with proper software, of course) convert that description into an
image that will display properly on its hardware.



So Why Raster?

A little bit of history: For a brief time, displays were actually vector
displays (“calligraphic” or “X-Y”). A beam would trace out the
desired image on an otherwise black screen, many times per
second.

Modern displays, though, are raster (back to the early 1980s or
even before), so a vector graphic must be converted to raster (a
bitmap) in order to display. This meant that for two-dimensional
games it was often easier to deal with raster graphics from the
start.

Additionally, a low-resolution display gives a lot more importance
to each individual pixel, and it is not efficient to tweak individual
pixels with vector representation.



Back to Vector, in part

High-resolution displays decrease the need to tweak images at the
pixel level, so vector representations can give quality images while
maintaining efficiency.

Perhaps more importantly, many games are now 3D. Raster
graphics would require representing the entire solid object, despite
the fact that we only need to see the surface. With 3D games
there is also a lot more manipulation of the objects, as the player
moves around and looks from different angles. These combine to
make a vector representation again the better choice.

However, raster representation is still more efficient for textures
and patterns, so modern games use a combination of vector
graphics for objects and raster graphics for surface detail.

A couple more examples of vector graphics follow.



Battlezone

(Atari, 1980)



Star Wars

(Atari, 1983)



Title slide graphic is of Armor Attack (Cinematronics, 1980)

All images are from Wikipedia, en.wikipedia.org

en.wikipedia.org

