Your name:
Instructor (please circle): Alex Barnett Michael Musty

Math 22 Summer 2017, Midterm 2, Tues Aug 8

Please show your work. No credit is given for solutions without work or justification.

1. [6 points]
(a) Compute the determinant of $\left[\begin{array}{cccc}0 & 2 & 0 & 1 \\ 0 & -1 & 0 & 2 \\ 2 & 21 & 7 & -4 \\ 0 & 3 & 1 & 5\end{array}\right]$.
(b) Let A_{0} be an invertible 4×4 matrix with det $A_{0}=1$, and suppose:

- A_{1} is obtained from A_{0} by interchanging 2 rows,
- A_{2} is obtained from A_{1} (note: not A_{0}) by scaling a row of A_{1} by 3 ,
- A_{3} is obtained from A_{2} (note: not A_{0}) by row-replacement.

Find the determinants of these matrices and fill them in below:

$$
\begin{aligned}
\operatorname{det} A_{1} & = \\
\operatorname{det} A_{2} & = \\
\operatorname{det} A_{3} & =
\end{aligned}
$$

2. [8 points] Let $A=\left[\begin{array}{cccc}-1 & 2 & -6 & -3 \\ 2 & -4 & 7 & 6 \\ -1 & 2 & -3 & -3\end{array}\right]$ which is row-equivalent to $\left[\begin{array}{cccc}1 & -2 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
(a) Find a basis for $\operatorname{Col} A$.
(b) Find a basis for $\operatorname{Nul} A$.
(c) Prove that the null space of any 3×4 matrix A is a subspace of \mathbb{R}^{4}.
3. [6 points]
(a) Let $H=\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbb{R}^{3}: x_{1}+x_{2}+x_{3}=0\right\}$.

Is the set $\left\{\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]\right\}$ a basis for H ? Explain.
(b) Let A and B be matrices such that $A B$ exists. Prove that $\operatorname{rank}(A B) \leq \operatorname{rank} A$. [Hint: each column of $A B$ is in $\mathrm{Col} A$.]
4. [9 points] Let $A=\left[\begin{array}{ccc}5 & -4 & -2 \\ 2 & -1 & -2 \\ 0 & 0 & 3\end{array}\right]$.
[Hint: numbers will come out very simply, so stop and check your work if they are not!]
(a) Use the characteristic polynomial to find A 's eigenvalues and their algebraic multiplicies:
(b) For each distinct eigenvalue of A, find a basis for its eigenspace:
(c) Evaluate $A^{2017}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
5. [8 points]
(a) A linear system has a system matrix A of size 7×9 (ie 7 equations in 9 unknowns). Say you know that there is some right-hand side vector for which there is no solution. What is the smallest $\operatorname{dim} \operatorname{Nul} A$ may be, and why?
(b) Now let A be any matrix. If the system $A \mathbf{x}=\mathbf{b}$ is consistent for all right-hand sides \mathbf{b}, explain why the system $A^{T} \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(c) Let A be any matrix. Is some subset of the rows of a A a basis for Row A ? Prove your answer. [As always, indicate what if any theorem(s) you use.]
6. [6 points]
(a) Is the set $\left\{1+t, 1-t, t+2 t^{2}\right\}$ a basis for \mathbb{P}_{2} ? Prove your answer. [State any theorems or results that you use.]
(b) Find the coefficients of $4(1+t)^{2}$ relative to the set from part (a).
7. [7 points] In this question only, no working is needed; just circle T or F .
(a) T / F :

The eigenvalues of a lower-triangular matrix (ie, all zeros above the diagonal) are the diagonal entries.
(b) T / F :

The dimension of an eigenspace can never exceed the algebraic multiplicity of the corresponding eigenvalue.
(c) T / F :

An eigenvector with eigenvalue 2 could be a linear combination of an eigenvector with eigenvalue 3 and an eigenvector with eigenvalue 4 .
(d) $\mathrm{T} / \mathrm{F}:$ Row reduction of a matrix always preserves its row space.
(e) T / F : Row reduction of a square matrix always preserves its eigenvalues.
(f) $\mathrm{T} / \mathrm{F}: \quad$ If $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ is a linear transformation with standard matrix A and the rank of A is 2 , then it is possible to have $T(\mathbf{x})=\mathbf{0}$ for every \mathbf{x} in the domain.

Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is an isomorphism from \mathbb{R}^{n} to \mathbb{R}^{m}, with $n, m>0$,
(g) T / F: with standard matrix A. Then it is impossible for $\operatorname{Nul} A$ and $\operatorname{Col} A$ to have the same dimension.

