1 (i) $P(X=2)=p \bar{p}, P(X=4)=q \bar{q}, P(X=3)=p \bar{q}+q \bar{p}$.
(ii) If $P(X=2)=P(X=4)$ then we get $p \bar{p}=q \bar{q}=(1-p)(1-\bar{p})=1-p-\bar{p}+p \bar{p}$ so it follows that $p+\bar{p}=1$. We also get $q=(1-p)$ and $\bar{q}=(1-\bar{p})=p$. Hence if $p=1 / 3$ we may get $a=2 / 9$.
(iii) Assuming $P(X=2)=P(X=3)$ and part (ii) we get $p \bar{p}=p(1-p)=p-p^{2}=$ $p \bar{q}+q \bar{p}=p^{2}+(1-p)^{2}$ so $3 p^{2}-3 p+1=0$. This polynomial has no real zeroes, so there is no solution.
2. If $k=2$ then we get $E(X)=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+3 \cdot \frac{1}{8}+\ldots$, which is exactly the same as the expected value for $k=1$, which we know is 2 .

The cases $k=3$ and $k=4$ may be done similarly, but it may be easier to use conditional expectation. Let X_{k} denote the number of trials to achieve k. Then $E\left(X_{k}\right)=$ $E\left(X_{k} \mid F_{1}\right) P\left(F_{1}\right)+E\left(X_{k} \mid F_{2}\right) P\left(F_{2}\right)$ where F_{1} denotes getting a tail on the first toss and F_{2} denotes getting a head on that toss. Obviously $P\left(F_{1}\right)=P\left(F_{2}\right)=\frac{1}{2}$. But now $E\left(X_{3} \mid F_{1}\right)=$ $1+E\left(X_{1}\right)=1+2=3$ and $E\left(X_{3} \mid F_{2}\right)=1+E\left(X_{2}\right)=1+2=3$, so $E\left(X_{3}\right)=3 \cdot \frac{1}{2}+3 \cdot \frac{1}{2}=3$. And $E\left(X_{4} \mid F_{1}\right)=1+E\left(X_{2}\right)=1+2=3$ while $E\left(X_{4} \mid F_{2}\right)=1+E\left(X_{3}\right)=1+3=4$, so $E\left(X_{4}\right)=\frac{3}{2}+2=\frac{7}{2}$.
3. (i) Let $\Omega=\{1,2,3\}, B=\{1,2\}, C=\{1,3\}$ and $A=\{1\}$. Then $P(A \mid B)=$ $P(A \mid C)=\frac{1}{2}$ and $\left.P A \mid B \cup C\right)=\frac{1}{3}$. Note that $A \cap B=\{1\}$, so in this case the conclusion may fail.
(ii) If B, C are disjoint then $P(B \cup C)=P(B)+P(C)$. Also $A \cap(B \cup C)=(A \cap B) \cup$ $(A \cap C)$ and $\frac{P(A \cap B)}{P(B)}=p=\frac{P(A \cap C)}{P(C)}$. Thus

$$
\frac{P(A \cap(B \cup C)}{P(B \cup C)}=\frac{P(A \cap B)+P(A \cap C)}{P(B \cup C)}=\frac{p P(B)+p P(C)}{P(B)+P(C)}=p
$$

4. $6 / 11$. Nearly everyone got this.
5. (i) There are 36 cards, 20 of which are even, so the answer is

$$
\frac{\binom{20}{4}}{\binom{36}{4}}
$$

(ii) The number of hands with at least two 2's is

$$
\binom{4}{2}\binom{32}{2}+\binom{4}{3}\binom{32}{1}+\binom{4}{4}
$$

so the probability is

$$
\frac{\binom{4}{2}\binom{32}{2}+\binom{4}{3}\binom{32}{1}+\binom{4}{4}}{\binom{36}{4}}
$$

(iii)

$$
\frac{\binom{4}{2}\binom{16}{2}}{\binom{4}{2}\binom{32}{2}}=\frac{\binom{16}{2}}{\binom{32}{2}}
$$

