Math 20
Homework 7
Due: August 14, 2015
Solve the following problems and explain your reasoning.

Book problems: 8.1.7, 8.1.17, 9.1.8, 9.1.16, 9.3.14
6. The following theorem is a more general version of the central limit theorem:

Lindeberg's Theorem: Let X_{1}, X_{2}, \ldots be a sequence of independent random variables. Set $\mu_{k}=E\left(X_{k}\right)$ and $\sigma_{k}^{2}=V\left(X_{k}\right)$. Let $S_{n}=X_{1}+\ldots+X_{n}$. Then S_{n} has mean $m_{n}=\mu_{1}+\ldots+\mu_{n}$ and variance $s_{n}^{2}=\sigma_{1}^{2}+\ldots+\sigma_{n}^{2}$. For a fixed $\epsilon>0$, define the truncated random variables:

$$
U_{k}= \begin{cases}X_{k}-\mu_{k} & \text { if }\left|X_{k}-\mu_{k}\right| \leq \epsilon s_{n} \\ 0 & \text { if }\left|X_{k}-\mu_{k}\right|>\epsilon s_{n}\end{cases}
$$

If $s_{n} \rightarrow \infty$ and for every $\epsilon>0$ we have:

$$
\frac{1}{s_{n}^{2}} \sum_{k=1}^{n} E\left(U_{k}^{2}\right) \rightarrow 1
$$

then X_{1}, X_{2}, \ldots satisfies the conclusion of the Central Limit Theorem.
Using Lindeberg's Theorem, show that if $X_{k}=$ the number of inversions induced by k in a permutation of $1,2,3, \ldots, n$, then $\left\{X_{i}\right\}_{i=1}^{\infty}$ satisfies the conclusion of the Central Limit Theorem.
7. Suppose that a fair die is rolled 100 times. Let X_{i} be the value obtained on the i th roll. Compute an approximation for:

$$
P\left(X_{1} X_{2} \ldots X_{100} \leq a^{100}\right)
$$

for $1<a<6$.

