Math 20
Homework 6
Due: August 7, 2015
Solve the following problems and explain your reasoning.

Book problems: 7.1.2, 7.1.10, 7.2.6, 8.1.5, 8.1.10, 8.2.8
7. Suppose X and Y are two random variables with density functions given by the deflated tent function:

$$
f_{X}(x)= \begin{cases}0 & \text { if }|x|>1 \\ \frac{3}{2}(x+1)^{2} & \text { if }-1 \leq x \leq 0 \\ \frac{3}{2}(x-1)^{2} & \text { if } 0<x \leq 1\end{cases}
$$

and the flattened box:

$$
f_{Y}(x)= \begin{cases}1 / 2 & \text { if } x \in[0,2] \\ 0 & \text { otherwise }\end{cases}
$$

respectively. Use the convolution to compute the density function for $X+Y$.
8. Let $p(x)$ and $q(x)$ be two polynomials of degree m and n respectively. We can think of these as vectors by using the coefficients. For instance, if $p(x)=p_{0}+p_{1} x+p_{2} x^{2}+\ldots+p_{m} x^{m}$, then we can uniquely encode $p(x)$ as a vector using $\hat{p}:=\left(p_{0}, p_{1}, \ldots, p_{m}\right)$. Using the (discrete) convolution, write down a formula for the product of $p(x)$ and $q(x)$ in terms of \hat{p} and \hat{q} (you can use the usual convention of writing the convolution as an infinite sum with the understanding that \hat{p} and \hat{q} are zero for indices outside the ranges of 0 and m, and 0 and n, respectively).
[Hint for problem 7.1.10: Use problem 8 to get the convolution for the distributions of a and b in terms of coefficients of a certain polynomial. Then you can use (without proof) the fact that if $n=p q$, with p the smallest prime divisor of n, then:

$$
\frac{1}{n}\left(1+x+x^{2}+\ldots+x^{n-1}\right)=\frac{1}{p}\left(1+x+x^{2}+\ldots+x^{p-1}\right) \frac{1}{q} f(x),
$$

where $f(x)$ is some polynomial. You might also find it useful to look at the solution to problem 7.1.9.]

