## Math 20

## Homework 5

Due: July 29, 2015
Solve the following problems and explain your reasoning.

Book problems: 5.2.2, 6.2.22, 6.2.23
4. The aim of this problem is to show that the normal density $\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$ is a density function, i.e. that:

$$
\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x=1
$$

After substituting $y=(x-\mu) / \sigma$, we see that:

$$
\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-y^{2} / 2} d y
$$

Thus it suffices to show $\int_{-\infty}^{\infty} e^{-y^{2} / 2} d y=\sqrt{2 \pi}$. For simplicity, set $I=\int_{-\infty}^{\infty} e^{-y^{2} / 2} d y$. Notice that:

$$
\begin{aligned}
I^{2} & =\int_{-\infty}^{\infty} e^{-y^{2} / 2} d y \int_{-\infty}^{\infty} e^{-x^{2} / 2} d x \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right) / 2} d y d x
\end{aligned}
$$

Evaluate this last expression by switching to polar coordinates and show that it is equal to $2 \pi$.
5. (a) Show that the normal density has variance $\sigma^{2}$.
(b) Suppose that $X$ is a continuous random variable with normal density. Using Wolfram Alpha or Mathematica compute the probability that $X$ is within one standard deviation of $\mu$, i.e. $P(|X-\mu| \leq \sigma)$. What is the probability that $X$ is within two standard deviations of $\mu$ ?
(c) Using your answer to part (b) explain why you would be surprised if in an experiment with outcome modeled by a normal random variable, the outcome was further than two standard deviations from the expected value.

