Midterm Exam 2 Math 1 November 9, 2011

Name:			
Please circle your i	instructor's name	below:	
	Harris	LaLonde	
Please read the foll	owing instructions	before starting the exam:	
	ive any help on the	calculators, notes, or books al exam, though you may ask th	*
		er possible. Even if your final ar of partial credit if we can see h	
• Please circle or o	otherwise indicate you	ur final answer.	
• This test has a indicated for eac		worth a total of 100 points.	Point values are
• You will have tw	o hours from the star	rt of the exam to complete it.	
• Good luck!			
HONOR STATEMENT: that all of the answers		nor received any help on this e	xam, and I attest
Signature:			

This page is for grading purposes only.

Problem	Score	Points
1		10
2		8
3		12
4		15
5		10
6		10
7		15
8		12
9		8
Total		100

- 1. [10 points] Multiple choice. Circle the correct answer for each question. Each part is worth 2 points.
- (a) Suppose that f(x) is a function satisfying $\lim_{x\to 2^-} f(x) = 4$, $\lim_{x\to 2^+} f(x) = 0$, and f(2) = 0. Then f has a _____ at x=2.
 - A. removable discontinuity
 - B. jump discontinuity
 - C. infinite discontinuity
 - D. corner
- (b) Suppose that when x is near 1,

$$x^4 - 4x^3 + 6x^2 - 4x + 2 \le f(x) \le 2x^2 - 4x + 3.$$

- What is $\lim_{x\to 1} f(x)$?
 - A. 1
 - B. 0
 - C. 3
 - D. -1
- (c) If f(x) and g(x) are differentiable functions, what is the formula for the derivative of fg(x)?
 - A. f'(x)g'(x)
 - B. f'(x)g'(x) + f(x)g(x)
 - C. f'(x)g(x) + f(x)g'(x)
 - D. f'(x)g(x)
- (d) $\lim_{x \to \infty} \sin(x) = ?$
 - A. 1
 - B. $+\infty$
 - C. $-\infty$
 - D. The limit does not exist.

(e) If f has the following graph, what are the equations of the horizontal asymptotes?

- A. x = 0 and x = 1
- B. x = 1 and x = -2
- C. y = 0 and y = -1
- D. y = 1 and y = -2

- **2.** [8 points] **Short answer.** Answer each of the following questions as precisely as possible. Each part is worth 2 points.
- (a) Complete the following statement:

A function f(x) is continuous at a real number a if ...

(b) State the definition of the derivative of a function f(x) at a real number a.

(c) Complete the statement of the following theorem:

"If f(x) is continuous on an interval [a,b] and N is a number satisfying f(a) < N < f(b), then ..."

What is this theorem called?

(d) Complete the statement of the following theorem:

"If
$$g(x) \le f(x) \le h(x)$$
 and $\lim_{x \to a} g(x) = \lim_{x \to a} h(x)$, then ..."

What is this theorem called?

3. [12 points] Below is the graph of a function f(x).

- (a) [2 points] What are $\lim_{x\to 5^-} f(x)$ and $\lim_{x\to 5^+} f(x)$?
- (b) [2 points] What are $\lim_{x\to 0^-} f(x)$ and $\lim_{x\to 0^+} f(x)$?
- (c) [2 points] What are $\lim_{x\to 2} f(x)$ and f(2)?

(d) [3 points] At what numbers is f discontinuous?

(e) [3 points] State all the numbers at which f(x) is **not** differentiable.

- 4. [15 points] Compute each of the following limits.
- (a) [5 points]

$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x - 1}$$

(b) [5 points]

$$\lim_{u \to 0} \frac{\sqrt{u+1} - 1}{u}$$

(c) [5 points]

$$\lim_{x\to\infty}\frac{3x^2+4x+7}{x^2+x+1}$$

5. [10 points] Below is the graph of a function f(x).

- (a) [6 points] Estimate the values of:
 - (i) f'(0)
 - (ii) f'(1)
 - (iii) f'(2)
 - (iv) f'(3)
 - (v) f'(4)
 - (vi) f'(5)

(b) [4 points] Sketch the graph of f'(x).

			У								
			-								_
			5								
			l								
			4								-
			l								
											_
			3								
			l								
			2								-
			ľ								
			l								
			1								_
			l								
2	2	1		1	2	2	4	-	-	7	•
-3	-2	-1		1	2	3	4	5	6	7	-
-3	-2	-1		1	2	3	4	5	6	7	
-3	-2	-1	-1	1	2	3	4	5	6	7	-
-3	-2	-1	-1	1	2	3	4	5	6	7	-
-3	-2	-1		1	2	3	4	5	6		-
-3	-2	-1	-1 -2	1	2	3	4	5	6		×
-3	-2	-1		1	2	3	4	5	6		X
-3	-2	-1	-2	1	2	3	4	5	6		- X
-3	-2	-1		1	2	3	4	5	6		X
-3	-2	-1	-2	1	2	3	4	5	6		- X
-3	-2	-1	-2	1	2	3	4	5	6		X
-3	-2	-1	-2	1	2	3	4	5	6		- X
-3	-2	-1	-2	1	2	3	4	5	6		X
-3	-2	-1	-2	1	2	3	4	5	6		- X

6. [10 points] Let

$$f(x) = \sqrt{4x + 1}.$$

(a) [8 points] Find f'(x) from the definition of the derivative.

(b) [2 points] State where f(x) is differentiable.

- 7. [15 points] Find the derivative of each of the following functions. (Simplify wherever possible.)
- (a) [5 points]

$$f(x) = e^x + 7x^2 - 2$$

(b) [5 points]

$$g(x) = \sqrt{x(e^x + 1)}$$

(c) [5 points]

$$h(x) = \frac{x^4 - 2x}{x + 1}$$

- 8. [12 points] Let $g(x) = 5x^2 10x + \frac{4}{x}$.
- (a) [5 points] Find the derivative g'(x).

(b) [2 points] Find g'(2).

(c) [5 points] Find the equation of the tangent line to the graph of g(x) at the point where x=2.

- **9.** [8 points] The height of a flying fish follows the equation $h(t) = -t^2 + 8t 12$ meters, where t is measured in seconds and h(t) = 0 corresponds to the surface of the water.
- (a) [3 points] At what time(s) is the flying fish at sea level?

(b) [5 points] Find the instantaneous velocity of the fish at each of these times. Include proper units.