Evaluating trigonometric functions of common angles

- Angles will always be measured in radians; 2π radians make a full circle, so you can convert degrees to radians by multiplying your angle by $\frac{2 \pi}{360}$.
- Remember the geometric definitions of the three basic trig functions (soh-cah-toa), as well as their values for a point (x, y) on the unit circle:

$$
\begin{array}{|c|c|c}
\hline \sin \theta=\frac{\text { opp }}{\text { hyp }}, \text { or " } y \text { " } & \cos \theta=\frac{\text { adj }}{\text { hyp }}, \text { or " } x \text { " } & \tan \theta=\frac{\text { opp }}{\text { adj }}, \text { or " } y / x^{\prime \prime} \\
\hline
\end{array}
$$

- Also, remember that the tangent of an angle θ equals the slope of a line at counterclockwise angle θ from the x-axis.
- Know these two triangles:

- To evaluate a trig function of some angle:
- First, find the closest whole multiple of π. This is your base angle; odd multiples of π mean leftward along the x-axis, even multiples mean rightward.
- Next, subtract the base angle from your angle. This is your reference angle; as always, a positive angle goes counterclockwise, a negative one clockwise.
- Start at your base angle and move in the direction of your reference angle;
\rightarrow If you end up on an axis, plot the point on the unit circle and read off the trig function in terms of x and y.
\rightarrow If not, fit the matching triangle into the wedge and read off the trig function from the triangle (remember: right and up are positive, left and down are negative).

- From the values of \sin , \cos, and tan, you can find the other three trig functions as below:

$$
\begin{array}{c|c|c}
\hline \csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta} \\
\hline
\end{array}
$$

