Evaluating trigonometric functions of common angles

• Angles will always be measured in radians; 2π radians make a full circle,

so you can convert degrees to radians by multiplying your angle by $\frac{2\pi}{360}$.

• Remember the geometric definitions of the three basic trig functions (soh-cah-toa), as well as their values for a point (*x*,*y*) on the *unit circle*:

$$\sin \theta = \frac{\operatorname{opp}}{\operatorname{hyp}}$$
, or "y" $\cos \theta = \frac{\operatorname{adj}}{\operatorname{hyp}}$, or "x" $\tan \theta = \frac{\operatorname{opp}}{\operatorname{adj}}$, or "y/x"

• Also, remember that the tangent of an angle θ equals the slope of a line at counterclockwise angle θ from the *x*-axis.

• To evaluate a trig function of some angle:

• Know these two triangles:

- First, find the closest whole multiple of π . This is your *base angle*; odd multiples of π mean leftward along the *x*-axis, even multiples mean rightward.
- Next, subtract the base angle from your angle. This is your *reference angle*; as always, a positive angle goes counterclockwise, a negative one clockwise.
- Start at your base angle and move in the direction of your reference angle;
 - \rightarrow If you end up on an axis, plot the point on the unit circle and read off the trig function in terms of *x* and *y*.
 - → If not, fit the matching triangle into the wedge and read off the trig function from the triangle (remember: right and up are *positive*, left and down are *negative*).

• From the values of sin, cos, and tan, you can find the other three trig functions as below:

$$\csc \theta = \frac{1}{\sin \theta}$$
 $\sec \theta = \frac{1}{\cos \theta}$ $\cot \theta = \frac{1}{\tan \theta}$