Math 1: Calculus with Algebra

Sample Exam Questions

Problem 1: Calculate the following limits.

$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3}$$
$$\lim_{x \to -4} \frac{\frac{1}{4} + \frac{1}{x}}{4 + x}$$
$$\lim_{x \to 0} \frac{\sin^2(4x)}{x^2}$$
$$\lim_{x \to 0} \frac{(1 + h)^5 - 1^5}{h}$$
$$\lim_{x \to 1} x 2^{x^5 - x^3}$$
$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 9}}{2x - 6}$$
$$\lim_{x \to 0} \frac{\sin(\sin(x))}{\sin(x)}$$

 $\lim_{x \to \pi} \ln(\cos(x) + 2)$

$$\lim_{h \to 0} \frac{\cos(h) - 1}{h}$$

$$\lim_{x \to \frac{1}{2}^{-}} |2x - 1|$$

$$\lim_{x \to \frac{1}{2}^{+}} |2x - 1|$$

$$\lim_{x \to \infty} \sqrt{9x^2 + x} - 3x$$

$$\lim_{x \to \infty} \frac{\sin(x)}{x}$$

$$\lim_{x \to \infty} \frac{\sin(x)}{x}$$

$$\lim_{x \to -\infty} \arctan(x)$$

$$\lim_{x \to -\infty} \frac{3 + e^x}{-11e^x - 4}$$

$$\lim_{x \to 1} \frac{\sin(x - 1)}{x^2 + x - 2}$$

Problem 2: The function [x] is defined to be the largest integer that is less than or equal to x, so for example [3.2] = 3. Graph f(x) = [x]. Where is f continuous?

Problem 3: Find the values of a and b that makes the function

$$f(x) = \begin{cases} x^2 - 3 & \text{if } x < -1 \\ ax + b & \text{if } -1 \le x \le 1 \\ -x^2 + 4 & \text{if } 1 < x \end{cases}$$

continuous everywhere.

Problem 4: Find the equation of the line tangent to the curve at the given point.

a)
$$y = 4x + 3$$
 at $x = 2$
b) $y = -4\sin(x) + x^3\cos(x)$ at $x = \frac{\pi}{2}$
c) $y = \cos(x)(\tan^2(x)\cos(x) + \cos(x))$ at $x = \frac{\pi}{6}$

Problem 5: Compute the following derivatives.

$$\frac{d}{dx}(\cos(x) - 3x)$$

$$(x^{2}e^{x})'$$

$$\frac{d}{dx}\left(\frac{-3\sec(x) + \sqrt[4]{x}}{-\tan(x)}\right)$$

$$\left(\frac{8\sqrt[3]{x} + \sqrt{7x} - 4x}{x^{3/2}}\right)'$$

$$(x^{3}e^{x}\csc(x))'$$

$$(e^{2x})'$$

Problem 6: Is $f(x) = \sqrt[5]{x}$ differentiable at zero?

Problem 7: Exercises 4-11 from Section 2.8, page 162.

Problem 8: Find the derivative of $f(x) = \frac{4x}{x+2}$ using the limit definition of the derivative.

Problem 9: Let
$$f(x) = \begin{cases} \frac{2x^2 - 5x - 3}{x - 3} & \text{if } x \neq 3 \\ 6 & \text{if } x = 3 \end{cases}$$
. Is f continuous at $x = 3$
3? Use the definition of continuity to justify your answer.

Problem 10: Find the 1000th derivative of $f(x) = xe^x$.