Math 1: Calculus with Algebra

Sample Exam Questions

Problem 1: Calculate the following limits.
$\lim _{x \rightarrow 3} \frac{x^{2}-x-6}{x-3}$
$\lim _{x \rightarrow-4} \frac{\frac{1}{4}+\frac{1}{x}}{4+x}$
$\lim _{x \rightarrow 0} \frac{\sin ^{2}(4 x)}{x^{2}}$
$\lim _{h \rightarrow 0} \frac{(1+h)^{5}-1^{5}}{h}$
$\lim _{x \rightarrow 1} x 2^{x^{5}-x^{3}}$
$\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-9}}{2 x-6}$
$\lim _{x \rightarrow 0} \frac{\sin (\sin (x))}{\sin (x)}$
$\lim _{x \rightarrow \pi} \ln (\cos (x)+2)$
$\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}$
$\lim _{x \rightarrow \frac{1}{2}^{-}}|2 x-1|$
$\lim _{x \rightarrow \frac{1}{2}^{+}}|2 x-1|$
$\lim _{x \rightarrow \infty} \sqrt{9 x^{2}+x}-3 x$
$\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$
$\lim _{x \rightarrow \infty} \sqrt{x^{3}+11 x^{2}-1}$
$\lim _{x \rightarrow-\infty} \arctan (x)$
$\lim _{x \rightarrow \infty} \frac{3+e^{x}}{-11 e^{x}-4}$
$\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x^{2}+x-2}$

Problem 2: The function $[x]$ is defined to be the largest integer that is less than or equal to x, so for example $[3.2]=3$. Graph $f(x)=[x]$. Where is f continuous?

Problem 3: Find the values of a and b that makes the function

$$
f(x)= \begin{cases}x^{2}-3 & \text { if } x<-1 \\ a x+b & \text { if }-1 \leq x \leq 1 \\ -x^{2}+4 & \text { if } 1<x\end{cases}
$$

continuous everywhere.

Problem 4: Find the equation of the line tangent to the curve at the given point.
a) $y=4 x+3$ at $x=2$
b) $y=-4 \sin (x)+x^{3} \cos (x)$ at $x=\frac{\pi}{2}$
c) $y=\cos (x)\left(\tan ^{2}(x) \cos (x)+\cos (x)\right)$ at $x=\frac{\pi}{6}$

Problem 5: Compute the following derivatives.
$\frac{d}{d x}(\cos (x)-3 x)$
$\left(x^{2} e^{x}\right)^{\prime}$
$\frac{d}{d x}\left(\frac{-3 \sec (x)+\sqrt[4]{x}}{-\tan (x)}\right)$
$\left(\frac{8 \sqrt[3]{x}+\sqrt{7 x}-4 x}{x^{3 / 2}}\right)^{\prime}$
$\left(x^{3} e^{x} \csc (x)\right)^{\prime}$
$\left(e^{2 x}\right)^{\prime}$

Problem 6: Is $f(x)=\sqrt[5]{x}$ differentiable at zero?
Problem 7: Exercises 4-11 from Section 2.8, page 162.

Problem 8: Find the derivative of $f(x)=\frac{4 x}{x+2}$ using the limit definition of the derivative.

Problem 9: Let $f(x)=\left\{\begin{array}{ll}\frac{2 x^{2}-5 x-3}{x-3} & \text { if } x \neq 3 \\ 6 & \text { if } x=3\end{array}\right.$. Is f continuous at $x=$ 3 ? Use the definition of continuity to justify your answer.

Problem 10: Find the 1000th derivative of $f(x)=x e^{x}$.

