Find the exponential function $f(x)=C a^{x}$ whose graph is given.

Solution, method 1. We need to find both C and a, using the two points that are given on the graph, namely $(0,2)$ and $\left(2, \frac{2}{9}\right)$. To do this, we plug the two points into the equation for $f(x)$. If we plug in the first point, we get

$$
2=C a^{0}
$$

Since anything to the power 0 is 1 , the equation becomes

$$
2=C \cdot 1,
$$

so $C=2$. Now we can plug in the second point, along with the value of C that we determined:

$$
\frac{2}{9}=2 a^{2}
$$

If we divide both sides by 2 , we get

$$
\frac{1}{9}=a^{2}
$$

Finally, we take the square root of both sides:

$$
\pm \frac{1}{3}=a
$$

Do both values of a work? Remembering that a is the base of our exponential, and knowing that bases have to be positive, we can single out the positive value as our answer. Thus $C=2$ and $a=\frac{1}{3}$.

Solution, method 2. We notice that $f(x)=C a^{x}$ looks like a transformation of the basic exponential function $g(x)=a^{x}$, with the exponential stretched vertically by a factor of C. We know that the original exponential had to cross the y-axis at $y=1$, but looking at the graph, we see that it crosses the y-axis at $y=2$. Thus the stretching factor C must be 2 . If we undo the stretch in the graph, the second point, $\left(2, \frac{2}{9}\right)$, would shrink to $\left(2, \frac{1}{9}\right)$. Plugging this into $g(x)$, we get

$$
\frac{1}{9}=a^{2}
$$

as in method 1 , so we again get $a=\frac{1}{3}$.

Solution, method 3. Here's a trick that will work when we don't have the y-intercept. We plug the two points into the equation to get two equations,

$$
2=C a^{0} \quad \text { and } \quad \frac{2}{9}=C a^{2}
$$

Dividing the second equation by the first gives us

$$
\frac{2 / 9}{2}=\frac{C a^{2}}{C a^{0}}
$$

which after canceling each side becomes

$$
\frac{1}{9}=a^{2}
$$

As we saw before, this means that $a=\frac{1}{3}$. Now that we know a, we can plug it into one of the original equations, say $\frac{2}{9}=C a^{2}$. This gives us

$$
\frac{2}{9}=C \cdot \frac{1}{9}
$$

Multiplying both sides by 9 , we have $C=2$.

