The graph of a function f is given.

(a) State the value of $f(-1)$.
(b) Estimate the value of $f(2)$.
(c) For what values of x is $f(x)=2$?
(d) Estimate the values of x such that $f(x)=0$.
(e) On what interval is f increasing?

Solution:

(a) From the figure we see that the point $(-1,-2)$ lies on the graph of f, so the value of f at -1 is $f(-1)=-2$.
(b) Looking at the figure, we see that the point $(2, f(2))$ is between $(2,2)$ and $(2,3)$, and a lot closer to $(2,3)$ than $(2,2)$, so I would guess that it is at about $(2,2.8)$. So the value of f at 2 is approximately $f(2)=2.8$.
(c) If we look in the figure for where the line $y=2$ crosses the function, we see that the points of intersection are $(-3,2)$ and $(1,2)$. So the values of x that satisfy $f(x)=2$ are $x=-3$ and $x=1$.
(d) This time we use the intersection of the line $y=1$ with the function, and the first point looks like it crosses the line between $(-3,0)$ and $(-2,0)$, near the middle, so I'd say the intersection is at $(-2.5,0)$. This means that one value of x that satisfies $f(x)=0$ is $x=-2.5$. The second point looks like it crosses the line between $(0,0)$ and $(1,0)$, at about $(0.3,0)$. Thus the second value of x that satisfies $f(x)=0$ is $x=0.3$.
(e) We see that $f(x)$ is defined when $-3 \leq x \leq 3$, so the domain of f is the closed interval $[-3,3]$. Notice that f takes on all values from -2 to 3 , so the range of f is $[-2,3]$.

