Math/CoSc 19 supplement, November 12, 2007

This supplement is to clear up some loose ends from class.
First, we consider hashing n keys to m slots. The average population per slot is $\alpha=n / m$. Let n_{i} be the population in the i th slot, so that

$$
\sum_{i=0}^{m-1} n_{i}=n, \quad \frac{1}{m} \sum_{i=0}^{m-1} n_{i}=\alpha
$$

That is, α is the average population per slot.
We ask whether a given object x is one of the keys. We do this by computing $h(x)$, and then looking through the linked list in the slot that $h(x)$ falls into. The time to compute $h(x)$ is 1 . If x is not a key, then it is equally likely to land in any slot, so the expected time to look through the linked list is

$$
\sum_{i=0}^{m-1} p(x \text { hashes to slot } i) n_{i}=\frac{1}{m} \sum_{i=0}^{m-1} n_{i}=\frac{n}{m}=\alpha
$$

Thus the expected time to decide that x is not a key, when in fact it is not a key, is $\Theta(1+\alpha)$.

Now suppose that x is indeed a key. Now the probability that x hashes to slot i is no longer uniform, it is n_{i} / n. After computing $h(x)$, the expected time to come to a conclusion about x is

$$
\begin{equation*}
\sum_{i=0}^{m-1} p(x \text { hashes to slot } i) n_{i}=\sum_{i=0}^{m-1} \frac{n_{i}}{n} n_{i}=\frac{1}{n} \sum_{i=0}^{m-1} n_{i}^{2} \tag{1}
\end{equation*}
$$

(So far this is exactly what we did in class.) Let $X_{j, k}$ be the indicator random variable

$$
X_{j, k}=\left\{\begin{array}{l}
1, \text { if key } j \text { and key } k \text { map to the same slot }, \\
0, \text { if not. }
\end{array}\right.
$$

Thus,

$$
p\left(X_{j, k}=1\right)= \begin{cases}1 / m, & \text { if } j \neq k \\ 1, & \text { if not }\end{cases}
$$

Note that the sum over all j and k of $X_{j, k}$ is the number of ordered pairs j, k which map to the same slot. But n_{i}^{2} is the number of ordered pairs of keys which map to slot i, so

$$
\sum_{i=0}^{m-1} n_{i}^{2}=\sum_{j, k=0}^{n-1} X_{j, k}
$$

where for the sake of simplicity, we assume the keys are numbered 0 to $n-1$. So, we can now find the expectation of $\sum_{i=0}^{m-1} n_{i}^{2}$. It is

$$
\sum_{j, k=0}^{n-1} p\left(X_{j, k}=1\right)
$$

There are $n^{2}-n$ pairs j, k with $j \neq k$ and n pairs where $j=k$, so this last sum is

$$
\left(n^{2}-n\right) / m+n<n^{2} / m+n
$$

Thus, from (1), after computing $h(x)$ the time to search for x is less than

$$
\frac{1}{n}\left(\frac{n^{2}}{m}+n\right)=\alpha+1
$$

Thus, the total expected time is $<\alpha+2$, which is $\Theta(1+\alpha)$.
The other loose end dealt with the analysis of the expected running time of the randomized Quicksort algorithm. Let $\alpha=5 / 4, \beta=1 / 10$, and $\gamma=9 / 10$. Then we had shown that

$$
\begin{equation*}
T(n) \leq \alpha n+T(\beta n)+T(\gamma n) \tag{2}
\end{equation*}
$$

We'd like to show that there is some $c>0$ such that $T(n)<c n \log n$ for all large numbers n. For $n=2$ the expression $n \log n$ is 2 , so that we can force the inequality to work for $n=2$ by taking c large enough, since $T(2)=O(1)$. Let us also assume that c is so large that $\alpha+c(\beta \log \beta+\gamma \log \gamma) \leq 0$. (Note that $\beta \log \beta+\gamma \log \gamma$ is negative.) For example $c \geq 3$ is sufficient here. Assume the inequality $T(m)<c m \log m$ works for numbers m smaller than n. In particular it works for βn and γn, since they are smaller than n. Then by (2),

$$
\begin{aligned}
T(n) & \leq \alpha n+c \beta n \log (\beta n)+c \gamma n \log (\gamma n) \\
& =n(\alpha+c \beta \log \beta+c \gamma \log \gamma)+(c \beta+c \gamma) n \log n \\
& \leq c n \log n,
\end{aligned}
$$

where we used $\beta+\gamma=1$ for the last inequality. We also used the fact that $\log (u v)=$ $\log u+\log v$. Thus, the inequality holds for n as well, so that by induction, it holds for all $n \geq 2$. [This argument could be made a bit more rigorous by worrying about the facts that βn and γn might not be integers, so that $T(\beta n)$ and $T(\gamma n)$ are not defined. This can be remedied by replacing βn with $\lfloor\beta n\rfloor$ and similarly for γn. The same proof works.]

