
Math/CoSc 19 supplement, November 12, 2007

This supplement is to clear up some loose ends from class.
First, we consider hashing n keys to m slots. The average population per slot is

α = n/m. Let ni be the population in the ith slot, so that

m−1
∑

i=0

ni = n,
1

m

m−1
∑

i=0

ni = α.

That is, α is the average population per slot.
We ask whether a given object x is one of the keys. We do this by computing h(x), and

then looking through the linked list in the slot that h(x) falls into. The time to compute
h(x) is 1. If x is not a key, then it is equally likely to land in any slot, so the expected
time to look through the linked list is

m−1
∑

i=0

p(x hashes to slot i)ni =
1

m

m−1
∑

i=0

ni =
n

m
= α.

Thus the expected time to decide that x is not a key, when in fact it is not a key, is
Θ(1 + α).

Now suppose that x is indeed a key. Now the probability that x hashes to slot i
is no longer uniform, it is ni/n. After computing h(x), the expected time to come to a
conclusion about x is

(1)
m−1
∑

i=0

p(x hashes to slot i)ni =
m−1
∑

i=0

ni

n
ni =

1

n

m−1
∑

i=0

n2

i .

(So far this is exactly what we did in class.) Let Xj,k be the indicator random variable

Xj,k =

{

1, if key j and key k map to the same slot,
0, if not.

Thus,

p(Xj,k = 1) =

{

1/m, if j 6= k,
1, if not.

Note that the sum over all j and k of Xj,k is the number of ordered pairs j, k which map
to the same slot. But n2

i is the number of ordered pairs of keys which map to slot i, so

m−1
∑

i=0

n2

i =

n−1
∑

j,k=0

Xj,k,

where for the sake of simplicity, we assume the keys are numbered 0 to n − 1. So, we can
now find the expectation of

∑m−1

i=0
n2

i . It is

n−1
∑

j,k=0

p(Xj,k = 1).

1



There are n2 − n pairs j, k with j 6= k and n pairs where j = k, so this last sum is

(n2 − n)/m + n < n2/m + n.

Thus, from (1), after computing h(x) the time to search for x is less than

1

n

(

n2

m
+ n

)

= α + 1.

Thus, the total expected time is < α + 2, which is Θ(1 + α).

The other loose end dealt with the analysis of the expected running time of the
randomized Quicksort algorithm. Let α = 5/4, β = 1/10, and γ = 9/10. Then we had
shown that

(2) T (n) ≤ αn + T (βn) + T (γn).

We’d like to show that there is some c > 0 such that T (n) < cn log n for all large numbers
n. For n = 2 the expression n log n is 2, so that we can force the inequality to work for
n = 2 by taking c large enough, since T (2) = O(1). Let us also assume that c is so large
that α + c(β log β + γ log γ) ≤ 0. (Note that β log β + γ log γ is negative.) For example
c ≥ 3 is sufficient here. Assume the inequality T (m) < cm log m works for numbers m
smaller than n. In particular it works for βn and γn, since they are smaller than n. Then
by (2),

T (n) ≤ αn + cβn log(βn) + cγn log(γn)

= n(α + cβ log β + cγ log γ) + (cβ + cγ)n logn

≤ cn log n,

where we used β + γ = 1 for the last inequality. We also used the fact that log(uv) =
log u + log v. Thus, the inequality holds for n as well, so that by induction, it holds for
all n ≥ 2. [This argument could be made a bit more rigorous by worrying about the facts
that βn and γn might not be integers, so that T (βn) and T (γn) are not defined. This can
be remedied by replacing βn with bβnc and similarly for γn. The same proof works.]

2


