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Chapter 1

Counting

1.1 Basic Counting

The Sum Principle

We begin with an example that illustrates a fundamental principle.

Exercise 1.1-1 The loop below is part of an implementation of selection sort, which sorts
a list of items chosen from an ordered set (numbers, alphabet characters, words, etc.)
into non-decreasing order.

(1) for i = 1 to n
(2) for j = i + 1 to n
(3) if (A[i] > A[j])
(4) exchange A[i] and A[j]

How many times is the comparison A[i] > A[j] made in Line 3?

In Exercise 1.1-1, the segment of code from lines 2 through 4 is executed n times, once for
each value of i between 1 and n inclusive. The first time, it makes n−1 comparisons. The second
time, it makes n − 2 comparisons. The ith time, it makes n − i comparisons. Thus the total
number of comparisons is

(n − 1) + (n − 2) + · · · + 1 + 0 . (1.1)

This formula is not as important as the reasoning that lead us to it. In order to put the
reasoning into a broadly applicable format, we will describe what we were doing in the language
of sets. Think about the set S containing all comparisons the algorithm in Exercise 1.1-1 makes.
We divided set S into n pieces (i.e. smaller sets), the set S1 of comparisons made when i = 1,
the set S2 of comparisons made when i = 2, and so on through the set Sn of comparisons made
when i = n. We were able to figure out the number of comparisons in each of these pieces by
observation, and added together the sizes of all the pieces in order to get the size of the set of all
comparisons.

1



2 CHAPTER 1. COUNTING

Using some set-theoretic terminology, we describe a general version of the process we used.
Two sets are called disjoint when they have no elements in common. Each of the sets Si we
described above is disjoint from each of the others, because the comparisons we make for one
value of i are different from those we make with another value of i. We say the set of sets
{S1, . . . , Sn} is a family of mutually disjoint sets, meaning that it is a family (set) of sets, any two
of which are disjoint. With this language, we can state a general principle that explains what we
were doing without making any specific reference to the problem we were solving.

Principle 1.1 (Sum Principle) The size of a union of a family of mutually disjoint finite sets
is the sum of the sizes of the sets.

Thus we were, in effect, using the sum principle to solve Exercise 1.1-1. We can describe the
sum principle using an algebraic notation. Let |S| denote the size of the set S. For example,
|{a, b, c}| = 3 and |{a, b, a}| = 2.1 Using this notation, we can state the sum principle as: if S1,
S2, . . .Sn are disjoint sets, then

|S1 ∪ S2 ∪ · · · ∪ Sn| = |S1| + |S2| + · · · + |Sn| . (1.2)

To write this without the “dots” that indicate left-out material, we write

|
n⋃

i=1

Si| =
n∑

i=1

|Si|.

When we can write a set S as a union of disjoint sets S1, S2, . . . , Sk we say that we have
partitioned S into the sets S1, S2, . . . , Sk, and we say that the sets S1, S2, . . . , Sk form a partition
of S. Thus {{1}, {3, 5}, {2, 4}} is a partition of the set {1, 2, 3, 4, 5} and the set {1, 2, 3, 4, 5} can
be partitioned into the sets {1}, {3, 5}, {2, 4}. It is clumsy to say we are partitioning a set into
sets, so instead we call the sets Si into which we partition a set S the blocks of the partition.
Thus the sets {1}, {3, 5}, {2, 4} are the blocks of a partition of {1, 2, 3, 4, 5}. In this language,
we can restate the sum principle as follows.

Principle 1.2 (Sum Principle) If a finite set S has been partitioned into blocks, then the size
of S is the sum of the sizes of the blocks.

Abstraction

The process of figuring out a general principle that explains why a certain computation makes
sense is an example of the mathematical process of abstraction. We won’t try to give a precise
definition of abstraction but rather point out examples of the process as we proceed. In a course
in set theory, we would further abstract our work and derive the sum principle from the axioms of
set theory. In a course in discrete mathematics, this level of abstraction is unnecessary, so we will

1It may look strange to have |{a, b, a}| = 2, but an element either is or is not in a set. It cannot be in a set
multiple times. (This situation leads to the idea of multisets that will be introduced later on in this section.) We
gave this example to emphasize that the notation {a, b, a} means the same thing as {a, b}. Why would someone
even contemplate the notation {a, b, a}. Suppose we wrote S = {x|x is the first letter of Ann, Bob, or Alice}.
Explicitly following this description of S would lead us to first write down {a, b, a} and the realize it equals {a, b}.
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simply use the sum principle as the basis of computations when it is convenient to do so. If our
goal were only to solve this one exercise, then our abstraction would have been almost a mindless
exercise that complicated what was an “obvious” solution to Exercise 1.1-1. However the sum
principle will prove to be useful in a wide variety of problems. Thus we observe the value of
abstraction—when you can recognize the abstract elements of a problem, then abstraction often
helps you solve subsequent problems as well.

Summing Consecutive Integers

Returning to the problem in Exercise 1.1-1, we need to compute the sum given in Equation 1.1.
We may also write this sum as

n∑

i=1

n − i.

Now, if we don’t like to deal with summing the values of (n − i), we can observe that the
values we are summing are n − 1, n − 2, . . . , 1, so we may write that

n∑

i=1

n − i =
n−1∑

i=1

i.

Notice that the first sum has n terms, one of which is zero, while the second sum has n−1 terms.

A clever trick, usually attributed to Gauss, gives us a shorter formula for this sum.

We write
1 + 2 + · · · + n − 2 + n − 1

+ n − 1 + n − 2 + · · · + 2 + 1
n + n + · · · + n + n

The sum below the horizontal line has n− 1 terms each equal to n, and thus it is n(n− 1). It
is the sum of the two sums above the line, and since these sums are equal (being identical except
for being in reverse order), the sum below the line must be twice either sum above, so either of
the sums above must be n(n − 1)/2. In other words, we may write

n∑

i=1

n − i =
n−1∑

i=1

i =
n(n − 1)

2
.

This lovely trick gives us little or no real mathematical skill; learning how to think about
things to discover answers ourselves is much more useful. After we analyze Exercise 1.1-2 and
abstract the process we are using there, we will be able to come back to this problem at the end
of this section and see a way that we could have discovered this formula for ourselves without
any tricks.

The Product Principle

Exercise 1.1-2 The loop below is part of a program which computes the product of two
matrices. (You don’t need to know what the product of two matrices is to answer
this question.)
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(1) for i = 1 to r
(2) for j = 1 to m
(3) S = 0
(4) for k = 1 to n
(5) S = S + A[i, k] ∗ B[k, j]
(6) C[i, j] = S

How many multiplications (expressed in terms of r, m, and n) does this code carry
out in line 5?

Exercise 1.1-3 Consider the following longer piece of pseudocode that sorts a list of num-
bers and then counts “big gaps” in the list:

(1) for i = 1 to n − 1
(2) minval = A[i]
(3) minindex = i
(4) for j = i to n
(5) if (A[j] < minval)
(6) minval = A[j]
(7) minindex = j
(8) exchange A[i] and A[minindex]
(9)
(10) for i = 2 to n
(11) if (A[i] < 2 ∗ A[i − 1])
(12) bigjump = bigjump +1

How many comparisons does the above code make in lines 5 and 11 ?

In Exercise 1.1-2, the program segment in lines 4 through 5, which we call the “inner loop,”
takes exactly n steps, and thus makes n multiplications, regardless of what the variables i and j
are. The program segment in lines 2 through 5 repeats the inner loop exactly m times, regardless
of what i is. Thus this program segment makes n multiplications m times, so it makes nm
multiplications.

Why did we add in Exercise 1.1-1, but multiply here? We can answer this question using
the abstract point of view we adopted in discussing Exercise 1.1-1. Our algorithm performs a
certain set of multiplications. For any given i, the set of multiplications performed in lines 2
through 5 can be divided into the set S1 of multiplications performed when j = 1, the set S2 of
multiplications performed when j = 2, and, in general, the set Sj of multiplications performed
for any given j value. Each set Sj consists of those multiplications the inner loop carries out
for a particular value of j, and there are exactly n multiplications in this set. Let Ti be the set
of multiplications that our program segment carries out for a certain i value. The set Ti is the
union of the sets Sj ; restating this as an equation, we get

Ti =
m⋃

j=1

Sj .
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Then, by the sum principle, the size of the set Ti is the sum of the sizes of the sets Sj , and a sum
of m numbers, each equal to n is mn. Stated as an equation,

|Ti| = |
m⋃

j=1

Sj | =
m∑

j=1

|Sj | =
m∑

j=1

n = mn . (1.3)

Thus we are multiplying because multiplication is repeated addition!

From our solution we can extract a second principle that simply shortcuts the use of the sum
principle.

Principle 1.3 (Product Principle) The size of a union of m disjoint sets, each of size n, is
mn.

We now complete our discussion of Exercise 1.1-2. Lines 2 through 5 are executed once for
each value of i from 1 to r. Each time those lines are executed, they are executed with a different
i value, so the set of multiplications in one execution is disjoint from the set of multiplications
in any other execution. Thus the set of all multiplications our program carries out is a union
of r disjoint sets Ti of mn multiplications each. Then by the product principle, the set of all
multiplications has size rmn, so our program carries out rmn multiplications.

Exercise 1.1-3 demonstrates that thinking about whether the sum or product principle is
appropriate for a problem can help to decompose the problem into easily-solvable pieces. If you
can decompose the problem into smaller pieces and solve the smaller pieces, then you either
add or multiply solutions to solve the larger problem. In this exercise, it is clear that the
number of comparisons in the program fragment is the sum of the number of comparisons in the
first loop in lines 1 through 8 with the number of comparisons in the second loop in lines 10
through 12 (what two disjoint sets are we talking about here?). Further, the first loop makes
n(n + 1)/2 − 1 comparisons2, and that the second loop has n − 1 comparisons, so the fragment
makes n(n + 1)/2 − 1 + n − 1 = n(n + 1)/2 + n − 2 comparisons.

Two element subsets

Often, there are several ways to solve a problem. We originally solved Exercise 1.1-1 by using the
sum principal, but it is also possible to solve it using the product principal. Solving a problem
two ways not only increases our confidence that we have found the correct solution, but it also
allows us to make new connections and can yield valuable insight.

Consider the set of comparisons made by the entire execution of the code in this exercise.
When i = 1, j takes on every value from 2 to n. When i = 2, j takes on every value from 3 to
n. Thus, for each two numbers i and j, we compare A[i] and A[j] exactly once in our loop. (The
order in which we compare them depends on whether i or j is smaller.) Thus the number of
comparisons we make is the same as the number of two element subsets of the set {1, 2, . . . , n}3.
In how many ways can we choose two elements from this set? If we choose a first and second
element, there are n ways to choose a first element, and for each choice of the first element, there
are n− 1 ways to choose a second element. Thus the set of all such choices is the union of n sets

2To see why this is true, ask yourself first where the n(n + 1)/2 comes from, and then why we subtracted one.
3The relationship between the set of comparisons and the set of two-element subsets of {1, 2, . . . , n} is an

example of a bijection, an idea which will be examined more in Section 1.2.
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of size n− 1, one set for each first element. Thus it might appear that, by the product principle,
there are n(n − 1) ways to choose two elements from our set. However, what we have chosen is
an ordered pair, namely a pair of elements in which one comes first and the other comes second.
For example, we could choose 2 first and 5 second to get the ordered pair (2, 5), or we could
choose 5 first and 2 second to get the ordered pair (5, 2). Since each pair of distinct elements
of {1, 2, . . . , n} can be ordered in two ways, we get twice as many ordered pairs as two element
sets. Thus, since the number of ordered pairs is n(n − 1), the number of two element subsets of
{1, 2, . . . , n} is n(n−1)/2. This number comes up so often that it has its own name and notation.
We call this number “n choose 2” and denote it by

(n
2

)
. To summarize,

(n
2

)
stands for the number

of two element subsets of an n element set and equals n(n − 1)/2. Since one answer to Exercise
1.1-1 is 1 + 2 + · · · + n − 1 and a second answer to Exercise 1.1-1 is

(n
2

)
, this shows that

1 + 2 + · · · + n − 1 =

(
n

2

)
=

n(n − 1)
2

.

Important Concepts, Formulas, and Theorems

1. Set. A set is a collection of objects. In a set order is not important. Thus the set {A, B, C}
is the same as the set {A, C, B}. An element either is or is not in a set; it cannot be in a
set more than once, even if we have a description of a set which names that element more
than once.

2. Disjoint. Two sets are called disjoint when they have no elements in common.

3. Mutually disjoint sets. A set of sets {S1, . . . , Sn} is a family of mutually disjoint sets, if
each two of the sets Si are disjoint.

4. Size of a set. Given a set S, the size of S, denoted |S|, is the number of distinct elements
in S.

5. Sum Principle. The size of a union of a family of mutually disjoint sets is the sum of the
sizes of the sets. In other words, if S1, S2, . . .Sn are disjoint sets, then

|S1 ∪ S2 ∪ · · · ∪ Sn| = |S1| + |S2| + · · · + |Sn|.
To write this without the “dots” that indicate left-out material, we write

|
n⋃

i=1

Si| =
n∑

i=1

|Si|.

6. Partition of a set. A partition of a set S is a set of mutually disjoint subsets (sometimes
called blocks) of S whose union is S.

7. Sum of first n − 1 numbers.
n∑

i=1

n − i =
n−1∑

i=1

i =
n(n − 1)

2
.

8. Product Principle. The size of a union of m disjoint sets, each of size n, is mn.

9. Two element subsets.
(n
2

)
stands for the number of two element subsets of an n element set

and equals n(n − 1)/2.
(n
2

)
is read as “n choose 2.”
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Problems

1. The segment of code below is part of a program that uses insertion sort to sort a list A

for i = 2 to n
j=i
while j ≥ 2 and A[j] < A[j − 1]

exchange A[j] and A[j − 1]
j −−

What is the maximum number of times (considering all lists of n items you could be asked
to sort) the program makes the comparison A[j] < A[j − 1]? Describe as succinctly as you
can those lists that require this number of comparisons.

2. Five schools are going to send their baseball teams to a tournament, in which each team
must play each other team exactly once. How many games are required?

3. Use notation similar to that in Equations 1.2 and 1.3 to rewrite the solution to Exercise
1.1-3 more algebraically.

4. In how many ways can you draw a first card and then a second card from a deck of 52
cards?

5. In how many ways can you draw two cards from a deck of 52 cards.

6. In how many ways may you draw a first, second, and third card from a deck of 52 cards?

7. In how many ways may a ten person club select a president and a secretary-treasurer from
among its members?

8. In how many ways may a ten person club select a two person executive committee from
among its members?

9. In how many ways may a ten person club select a president and a two person executive
advisory board from among its members (assuming that the president is not on the advisory
board)?

10. By using the formula for
(n
2

)
is is straightforward to show that

n

(
n − 1

2

)
=

(
n

2

)
(n − 2).

However this proof just uses blind substitution and simplification. Find a more conceptual
explanation of why this formula is true.

11. If M is an m element set and N is an n-element set, how many ordered pairs are there
whose first member is in M and whose second member is in N?

12. In the local ice cream shop, there are 10 different flavors. How many different two-scoop
cones are there? (Following your mother’s rule that it all goes to the same stomach, a cone
with a vanilla scoop on top of a chocolate scoop is considered the same as a cone with a a
chocolate scoop on top of a vanilla scoop.)
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13. Now suppose that you decide to disagree with your mother in Exercise 12 and say that the
order of the scoops does matter. How many different possible two-scoop cones are there?

14. Suppose that on day 1 you receive 1 penny, and, for i > 1, on day i you receive twice as
many pennies as you did on day i − 1. How many pennies will you have on day 20? How
many will you have on day n? Did you use the sum or product principal?

15. The “Pile High Deli” offers a “simple sandwich” consisting of your choice of one of five
different kinds of bread with your choice of butter or mayonnaise or no spread, one of three
different kinds of meat, and one of three different kinds of cheese, with the meat and cheese
“piled high” on the bread. In how many ways may you choose a simple sandwich?
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1.2 Counting Lists, Permutations, and Subsets.

Using the Sum and Product Principles

Exercise 1.2-1 A password for a certain computer system is supposed to be between
4 and 8 characters long and composed of lower and/or upper case letters. How
many passwords are possible? What counting principles did you use? Estimate the
percentage of the possible passwords that have exactly four characters.

A good way to attack a counting problem is to ask if we could use either the sum principle
or the product principle to simplify or completely solve it. Here that question might lead us to
think about the fact that a password can have 4, 5, 6, 7 or 8 characters. The set of all passwords
is the union of those with 4, 5, 6, 7, and 8 letters so the sum principle might help us. To write
the problem algebraically, let Pi be the set of i-letter passwords and P be the set of all possible
passwords. Clearly,

P = P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 .

The Pi are mutually disjoint, and thus we can apply the sum principal to obtain

|P | =
8∑

i=4

|Pi| .

We still need to compute |Pi|. For an i-letter password, there are 52 choices for the first letter, 52
choices for the second and so on. Thus by the product principle, |Pi|, the number of passwords
with i letters is 52i. Therefore the total number of passwords is

524 + 525 + 526 + 527 + 528.

Of these, 524 have four letters, so the percentage with 54 letters is

100 · 524

524 + 525 + 526 + 527 + 528.

Although this is a nasty formula to evaluate by hand, we can get a quite good estimate as follows.
Notice that 528 is 52 times as big as 527, and even more dramatically larger than any other term
in the sum in the denominator. Thus the ratio thus just a bit less than

100 · 524

528,

which is 100/524, or approximately .000014. Thus to five decimal places, only .00001% of the
passwords have four letters. It is therefore much easier guess a password that we know has four
letters than it is to guess one that has between 4 and 8 letters—roughly 7 million times easier!

In our solution to Exercise 1.2-1, we casually referred to the use of the product principle in
computing the number of passwords with i letters. We didn’t write any set as a union of sets of
equal size. We could have, but it would have been clumsy and repetitive. For this reason we will
state a second version of the product principle that we can derive from the version for unions of
sets by using the idea of mathematical induction that we study in Chapter 4.

Version 2 of the product principle states:
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Principle 1.4 (Product Principle, Version 2) If a set S of lists of length m has the proper-
ties that

1. There are i1 different first elements of lists in S, and

2. For each j > 1 and each choice of the first j − 1 elements of a list in S there are ij choices
of elements in position j of those lists,

then there are i1i2 · · · im lists in S.

Let’s apply this version of the product principle to compute the number of m-letter passwords.
Since an m-letter password is just a list of m letters, and since there are 52 different first elements
of the password and 52 choices for each other position of the password, we have that i1 = 52, i2 =
52, . . . , im = 52. Thus, this version of the product principle tells us immediately that the number
of passwords of length m is i1i2 · · · im = 52m.

Lists and functions

We have left a term undefined in our discussion of version 2 of the product principle, namely
the word “list.” A list of 3 things chosen from a set T consists of a first member t1 of T , a
second member t2 of T , and a third member t3 of T . If we rewrite the list in a different order,
we get a different list. A list of k things chosen from T consists of a first member of T through
a kth member of T . We can use the word “function,” which you probably recall from algebra or
calculus, to be more precise.

Recall that a function from a set S (called the domain of the function) to a set T (called
the range of the function) is a relationship between the elements of S and the elements of T
that relates exactly one element of T to each element of S. We use a letter like f to stand for a
function and use f(x) to stand for the one and only one element of T that the function relates
to the element x of S. You are probably used to thinking of functions in terms of formulas like
f(x) = x2. We need to use formulas like this in algebra and calculus because the functions that
you study in algebra and calculus have infinite sets of numbers as their domains and ranges. In
discrete mathematics, functions often have finite sets as their domains and ranges, and so it is
possible to describe a function by saying exactly what it is. For example

f(1) = Sam, f(2) = Mary, f(3) = Sarah

is a function that describes a list of three people. This suggests a precise definition of a list of k
elements from a set T : A list of k elements from a set T is a function from {1, 2, . . . , k} to T .

Exercise 1.2-2 Write down all the functions from the two-element set {1, 2} to the two-
element set {a, b}.

Exercise 1.2-3 How many functions are there from a two-element set to a three element
set?

Exercise 1.2-4 How many functions are there from a three-element set to a two-element
set?
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In Exercise 1.2-2 one thing that is difficult is to choose a notation for writing the functions
down. We will use f1, f2, etc., to stand for the various functions we find. To describe a function
fi from {1, 2} to {a, b} we have to specify fi(1) and fi(2). We can write

f1(1) = a f1(2) = b

f2(1) = b f2(2) = a

f3(1) = a f3(2) = a

f4(1) = b f4(2) = b

We have simply written down the functions as they occurred to us. How do we know we have all
of them? The set of all functions from {1, 2} to {a, b} is the union of the functions fi that have
fi(1) = a and those that have fi(1) = b. The set of functions with fi(1) = a has two elements,
one for each choice of fi(2). Therefore by the product principle the set of all functions from {1, 2}
to {a, b} has size 2 · 2 = 4.

To compute the number of functions from a two element set (say {1, 2}) to a three element
set, we can again think of using fi to stand for a typical function. Then the set of all functions
is the union of three sets, one for each choice of fi(1). Each of these sets has three elements, one
for each choice of fi(2). Thus by the product principle we have 3 · 3 = 9 functions from a two
element set to a three element set.

To compute the number of functions from a three element set (say {1, 2, 3}) to a two element
set, we observe that the set of functions is a union of four sets, one for each choice of fi(1) and
fi(2) (as we saw in our solution to Exercise 1.2-2). But each of these sets has two functions in
it, one for each choice of fi(3). Then by the product principle, we have 4 · 2 = 8 functions from
a three element set to a two element set.

A function f is called one-to-one or an injection if whenever x �= y, f(x) �= f(y). Notice that
the two functions f1 and f2 we gave in our solution of Exercise 1.2-2 are one-to-one, but f3 and
f4 are not.

A function f is called onto or a surjection if every element y in the range is f(x) for some
x in the domain. Notice that the functions f1 and f2 in our solution of Exercise 1.2-2 are onto
functions but f3 and f4 are not.

Exercise 1.2-5 Using two-element sets or three-element sets as domains and ranges, find
an example of a one-to-one function that is not onto.

Exercise 1.2-6 Using two-element sets or three-element sets as domains and ranges, find
an example of an onto function that is not one-to-one.

Notice that the function given by f(1) = c, f(2) = a is an example of a function from {1, 2}
to {a, b, c} that is one-to one but not onto.

Notice that the function given by f(1) = a, f(2) = b, f(3) = a is an example of a function
from {1, 2, 3} to {a, b} that is onto but not one to one.

The Bijection Principle

Exercise 1.2-7 The loop below is part of a program to determine the number of triangles
formed by n points in the plane.
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(1) trianglecount = 0
(2) for i = 1 to n
(3) for j = i + 1 to n
(4) for k = j + 1 to n
(5) if points i, j, and k are not collinear
(6) trianglecount = trianglecount +1

How many times does the above code check three points to see if they are collinear
in line 5?

In Exercise 1.2-7, we have a loop embedded in a loop that is embedded in another loop.
Because the second loop, starting in line 3, begins with j = i + 1 and j increase up to n, and
because the third loop, starting in line 4, begins with k = j + 1 and increases up to n, our code
examines each triple of values i, j, k with i < j < k exactly once. For example, if n is 4, then
the triples (i, j, k) used by the algorithm, in order, are (1, 2, 3), (1, 2, 4), (1, 3, 4), and (2, 3, 4).
Thus one way in which we might have solved Exercise 1.2-7 would be to compute the number
of such triples, which we will call increasing triples. As with the case of two-element subsets
earlier, the number of such triples is the number of three-element subsets of an n-element set.
This is the second time that we have proposed counting the elements of one set (in this case the
set of increasing triples chosen from an n-element set) by saying that it is equal to the number
of elements of some other set (in this case the set of three element subsets of an n-element set).
When are we justified in making such an assertion that two sets have the same size? There is
another fundamental principle that abstracts our concept of what it means for two sets to have
the same size. Intuitively two sets have the same size if we can match up their elements in such
a way that each element of one set corresponds to exactly one element of the other set. This
description carries with it some of the same words that appeared in the definitions of functions,
one-to-one, and onto. Thus it should be no surprise that one-to-one and onto functions are part
of our abstract principle.

Principle 1.5 (Bijection Principle) Two sets have the same size if and only if there is a
one-to-one function from one set onto the other.

Our principle is called the bijection principle because a one-to-one and onto function is called
a bijection. Another name for a bijection is a one-to-one correspondence. A bijection from a set
to itself is called a permutation of that set.

What is the bijection that is behind our assertion that the number of increasing triples equals
the number of three-element subsets? We define the function f to be the one that takes the
increasing triple (i, j, k) to the subset {i, j, k}. Since the three elements of an increasing triple
are different, the subset is a three element set, so we have a function from increasing triples to
three element sets. Two different triples can’t be the same set in two different orders, so different
triples have to be associated with different sets. Thus f is one-to-one. Each set of three integers
can be listed in increasing order, so it is the image under f of an increasing triple. Therefore f
is onto. Thus we have a one-to-one correspondence, or bijection, between the set of increasing
triples and the set of three element sets.
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k-element permutations of a set

Since counting increasing triples is equivalent to counting three-element subsets, we can count
increasing triples by counting three-element subsets instead. We use a method similar to the
one we used to compute the number of two-element subsets of a set. Recall that the first step
was to compute the number of ordered pairs of distinct elements we could chose from the set
{1, 2, . . . , n}. So we now ask in how many ways may we choose an ordered triple of distinct
elements from {1, 2, . . . , n}, or more generally, in how many ways may we choose a list of k
distinct elements from {1, 2, . . . , n}. A list of k-distinct elements chosen from a set N is called a
k-element permutation of N .4

How many 3-element permutations of {1, 2, . . . , n} can we make? Recall that a k-element
permutation is a list of k distinct elements. There are n choices for the first number in the list.
For each way of choosing the first element, there are n−1 choices for the second. For each choice
of the first two elements, there are n− 2 ways to choose a third (distinct) number, so by version
2 of the product principle, there are n(n − 1)(n − 2) ways to choose the list of numbers. For
example, if n is 4, the three-element permutations of {1, 2, 3, 4} are

L = {123, 124, 132, 134, 142, 143, 213, 214, 231, 234, 241, 243,

312, 314, 321, 324, 341, 342, 412, 413, 421, 423, 431, 432}. (1.4)

There are indeed 4 · 3 · 2 = 24 lists in this set. Notice that we have listed the lists in the order
that they would appear in a dictionary (assuming we treated numbers as we treat letters). This
ordering of lists is called the lexicographic ordering.

A general pattern is emerging. To compute the number of k-element permutations of the set
{1, 2, . . . , n}, we recall that they are lists and note that we have n choices for the first element of
the list, and regardless of which choice we make, we have n− 1 choices for the second element of
the list, and more generally, given the first i− 1 elements of a list we have n− (i− 1) = n− i + 1
choices for the ith element of the list. Thus by version 2 of the product principle, we have
n(n− 1) · · · (n− k + 1), which is the first k terms of n!, ways to choose a k-element permutation
of {1, 2, . . . , n}. There is a very handy notation for this product first suggested by Don Knuth.
We use nk to stand for n(n − 1) · · · (n − k + 1), and call it the kth falling factorial power of n.
We can summarize our observations in a theorem.

Theorem 1.1 The number k-element permutations of an n-element set is

nk = n(n − 1) · · · (n − k + 1) = n!/(n − k)! .

Counting subsets of a set

We now return to the question of counting the number of three element subsets of a {1, 2, . . . , n}.
We use

(n
3

)
, which we read as “n choose 3” to stand for the number of three element subsets of

4In particular a k-element permutation of {1, 2, . . . k} is a list of k distinct elements of {1, 2, . . . , k}, which,
by our definition of a list is a function from {1, 2, . . . , k} to {1, 2, . . . , k}. This function must be one-to-one since
the elements of the list are distinct. Since there are k distinct elements of the list, every element of {1, 2, . . . , k}
appears in the list, so the function is onto. Therefore it is a bijection. Thus our definition of a permutation of a
set is consistent with our definition of a k-element permutation in the case where the set is {1, 2, . . . , k}.
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{1, 2, . . . , n}, or more generally of any n-element set. We have just carried out the first step of
computing

(n
3

)
by counting the number of three-element permutations of {1, 2, . . . , n}.

Exercise 1.2-8 Let L be the set of all three-element permutations of {1, 2, 3, 4}, as in
Equation 1.4. How many of the lists (permutations) in L are lists of the 3 element
set {1, 3, 4}? What are these lists?

We see that this set appears in L as 6 different lists: 134, 143, 314, 341, 413, and 431. In
general given three different numbers with which to create a list, there are three ways to choose
the first number in the list, given the first there are two ways to choose the second, and given
the first two there is only one way to choose the third element of the list. Thus by version 2 of
the product principle once again, there are 3 · 2 · 1 = 6 ways to make the list.

Since there are n(n − 1)(n − 2) permutations of an n-element set, and each three-element
subset appears in exactly 6 of these lists, the number of three-element permutations is six times
the number of three element subsets. That is, n(n − 1)(n − 2) =

(n
3

)
· 6. Whenever we see that

one number that counts something is the product of two other numbers that count something,
we should expect that there is an argument using the product principle that explains why. Thus
we should be able to see how to break the set of all 3-element permutations of {1, 2, . . . , n}
into either 6 disjoint sets of size

(n
3

)
or into

(n
3

)
subsets of size six. Since we argued that each

three element subset corresponds to six lists, we have described how to get a set of six lists
from one three-element set. Two different subsets could never give us the same lists, so our sets
of three-element lists are disjoint. In other words, we have divided the set of all three-element
permutations into

(n
3

)
mutually sets of size six. In this way the product principle does explain

why n(n − 1)(n − 2) =
(n
3

)
· 6. By division we get that we have

(
n

3

)
= n(n − 1)(n − 2)/6

three-element subsets of {1, 2, . . . , n}. For n = 4, the number is 4(3)(2)/6 = 4. These sets are
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}. It is straightforward to verify that each of these sets
appears 6 times in L, as 6 different lists.

Essentially the same argument gives us the number of k-element subsets of {1, 2, . . . , n}. We
denote this number by

(n
k

)
, and read it as “n choose k.” Here is the argument: the set of all

k-element permutations of {1, 2, . . . , n} can be partitioned into
(n
k

)
disjoint blocks5, each block

consisting of all k-element permutations of a k-element subset of {1, 2, . . . , n}. But the number
of k-element permutations of a k-element set is k!, either by version 2 of the product principle or
by Theorem 1.1. Thus by version 1 of the product principle we get the equation

nk =

(
n

k

)
k!.

Division by k! gives us our next theorem.

Theorem 1.2 For integers n and k with 0 ≤ k ≤ n, the number of k element subsets of an n
element set is

nk

k!
=

n!
k!(n − k)!

5using the language introduced for partitions of sets in Section 1.1
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Proof: The proof is given above, except in the case that k is 0; however the only subset of our
n-element set of size zero is the empty set, so we have exactly one such subset. This is exactly
what the formula gives us as well. (Note that the cases k = 0 and k = n both use the fact that
0! = 1.6) The equality in the theorem comes from the definition of nk

Another notation for the numbers
(n
k

)
is C(n, k). Thus we have that

C(n, k) =

(
n

k

)
=

n!
k!(n − k)!

. (1.5)

These numbers are called binomial coefficients for reasons that will become clear later.

Important Concepts, Formulas, and Theorems

1. List. A list of k items chosen from a set X is a function from {1, 2, . . . k} to X.

2. Lists versus sets. In a list, the order in which elements appear in the list matters, and
an element may appear more than once. In a set, the order in which we write down the
elements of the set does not matter, and an element can appear at most once.

3. Product Principle, Version 2. If a set S of lists of length m has the properties that

(a) There are i1 different first elements of lists in S, and

(b) For each j > 1 and each choice of the first j − 1 elements of a list in S there are ij
choices of elements in position j of those lists,

then there are i1i2 · · · im lists in S.

4. Function. A function f from a set S to a set T is a relationship between S and T that
relates exactly one element of T to each element of S. We write f(x) for the one and only
one element of T that the function f relates to the element x of S. The same element of T
may be related to different members of S.

5. Onto, Surjection A function f from a set S to a set T is onto if for each element y ∈ T ,
there is at least one x ∈ S such that f(x) = y. An onto function is also called a surjection.

6. One-to-one, Injection. A function f from a set S to a set T is one-to-one if, for each x ∈ S
and y ∈ S with x �= y, f(x) �= f(y). A one-to-one function is also called an injection.

7. Bijection, One-to-one correspondence. A function from a set S to a set T is a bijection if it
is both one-to-one and onto. A bijection is sometimes called a one-to-one correspondence.

8. Permutation. A one-to-one function from a set S to S is called a permutation of S.

9. k-element permutation. A k-element permutation of a set S is a list of k distinct elements
of S.

10. k-element subsets. n choose k. Binomial Coefficients. For integers n and k with 0 ≤ k ≤ n,
the number of k element subsets of an n element set is n!/k!(n − k)!. The number of k-
element subsets of an n-element set is usually denoted by

(n
k

)
or C(n, k), both of which are

read as “n choose k.” These numbers are called binomial coefficients.
6There are many reasons why 0! is defined to be one; making the formula for

(
n
k

)
work out is one of them.
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11. The number of k-element permutations of an n-element set is

nk = n(n − 1) · · · (n − k + 1) = n!/(n − k)!.

12. When we have a formula to count something and the formula expresses the result as a
product, it is useful to try to understand whether and how we could use the product
principle to prove the formula.

Problems

1. The “Pile High Deli” offers a “simple sandwich” consisting of your choice of one of five
different kinds of bread with your choice of butter or mayonnaise or no spread, one of three
different kinds of meat, and one of three different kinds of cheese, with the meat and cheese
“piled high” on the bread. In how many ways may you choose a simple sandwich?

2. In how many ways can we pass out k distinct pieces of fruit to n children (with no restriction
on how many pieces of fruit a child may get)?

3. Write down all the functions from the three-element set {1, 2, 3} to the set {a, b}. Indicate
which functions, if any, are one-to-one. Indicate which functions, if any, are onto.

4. Write down all the functions form the two element set {1, 2} to the three element set {a, b, c}
Indicate which functions, if any, are one-to-one. Indicate which functions, if any, are onto.

5. There are more functions from the real numbers to the real numbers than most of us can
imagine. However in discrete mathematics we often work with functions from a finite set
S with s elements to a finite set T with t elements. Then there are only a finite number of
functions from S to T . How many functions are there from S to T in this case?

6. Assuming k ≤ n, in how many ways can we pass out k distinct pieces of fruit to n children if
each child may get at most one? What is the number if k > n? Assume for both questions
that we pass out all the fruit.

7. Assume k ≤ n, in how many ways can we pass out k identical pieces of fruit to n children if
each child may get at most one? What is the number if k > n? Assume for both questions
that we pass out all the fruit.

8. What is the number of five digit (base ten) numbers? What is the number of five digit
numbers that have no two consecutive digits equal? What is the number that have at least
one pair of consecutive digits equal?

9. We are making a list of participants in a panel discussion on allowing alcohol on campus.
They will be sitting behind a table in the order in which we list them. There will be four
administrators and four students. In how many ways may we list them if the administrators
must sit together in a group and the students must sit together in a group? In how many
ways may we list them if we must alternate students and administrators?

10. (This problem is for students who are working on the relationship between k-element per-
mutations and k-element subsets.) Write down all three element permutations of the five
element set {1, 2, 3, 4, 5} in lexicographic order. Underline those that correspond to the set
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{1, 3, 5}. Draw a rectangle around those that correspond to the set {2, 4, 5}. How many
three-element permutations of {1, 2, 3, 4, 5} correspond to a given 3-element set? How many
three-element subsets does the set {1, 2, 3, 4, 5} have?

11. In how many ways may a class of twenty students choose a group of three students from
among themselves to go to the professor and explain that the three-hour labs are actually
taking ten hours?

12. We are choosing participants for a panel discussion allowing on allowing alcohol on campus.
We have to choose four administrators from a group of ten administrators and four students
from a group of twenty students. In how many ways may we do this?

13. We are making a list of participants in a panel discussion on allowing alcohol on campus.
They will be sitting behind a table in the order in which we list them. There will be
four administrators chosen from a group of ten administrators and four students chosen
from a group of twenty students. In how many ways may we choose and list them if
the administrators must sit together in a group and the students must sit together in a
group? In how many ways may we choose and list them if we must alternate students and
administrators?

14. In the local ice cream shop, you may get a sundae with two scoops of ice cream from 10
flavors (in accordance with your mother’s rules from Problem 12 in Section 1.1, the way the
scoops sit in the dish does not matter), any one of three flavors of topping, and any (or all
or none) of whipped cream, nuts and a cherry. How many different sundaes are possible?

15. In the local ice cream shop, you may get a three-way sundae with three of the ten flavors
of ice cream, any one of three flavors of topping, and any (or all or none) of whipped
cream, nuts and a cherry. How many different sundaes are possible(in accordance with
your mother’s rules from Problem 12 in Section 1.1, the way the scoops sit in the dish does
not matter) ?

16. A tennis club has 2n members. We want to pair up the members by twos for singles
matches. In how many ways may we pair up all the members of the club? Suppose that in
addition to specifying who plays whom, for each pairing we say who serves first. Now in
how many ways may we specify our pairs?

17. A basketball team has 12 players. However, only five players play at any given time during
a game. In how may ways may the coach choose the five players? To be more realistic, the
five players playing a game normally consist of two guards, two forwards, and one center.
If there are five guards, four forwards, and three centers on the team, in how many ways
can the coach choose two guards, two forwards, and one center? What if one of the centers
is equally skilled at playing forward?

18. Explain why a function from an n-element set to an n-element set is one-to-one if and only
if it is onto.

19. The function g is called an inverse to the function f if the domain of g is the range of f , if
g(f(x)) = x for every x in the domain of f and if f(g(y)) = y for each y in the range of f .

(a) Explain why a function is a bijection if and only if it has an inverse function.
(b) Explain why a function that has an inverse function has only one inverse function.
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1.3 Binomial Coefficients

In this section, we will explore various properties of binomial coefficients.

Pascal’s Triangle

Table 1 contains the values of the binomial coefficients
(n
k

)
for n = 0 to 6 and all relevant k values.

The table begins with a 1 for n = 0 and k = 0, because the empty set, the set with no elements,
has exactly one 0-element subset, namely itself. We have not put any value into the table for a
value of k larger than n, because we haven’t defined what we mean by the binomial coefficient(n
k

)
in that case. However, since there are no subsets of an n-element set that have size larger

than n, it is natural to define
(n
k

)
to be zero when k > n, and so we define

(n
k

)
to be zero when

k > n. Thus we could could fill in the empty places in the table with zeros. The table is easier
to read if we don’t fill in the empty spaces, so we just remember that they are zero.

Table 1.1: A table of binomial coefficients

n\k 0 1 2 3 4 5 6
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

Exercise 1.3-1 What general properties of binomial coefficients do you see in Table 1.1

Exercise 1.3-2 What is the next row of the table of binomial coefficients?

Several properties of binomial coefficients are apparent in Table 1.1. Each row begins with a
1, because

(n
0

)
is always 1, as it must be because there is just one subset of an n-element set with

0 elements, namely the empty set. Similarly, each row ends with a 1, because an n-element set S
has just one n-element subset, namely S itself. Each row increases at first, and then decreases.
Further the second half of each row is the reverse of the first half. The array of numbers called
Pascal’s Triangle emphasizes that symmetry by rearranging the rows of the table so that they
line up at their centers. We show this array in Table 2. When we write down Pascal’s triangle,
we leave out the values of n and k.

You may know a method for creating Pascal’s triangle that does not involve computing
binomial coefficients, but rather creates each row from the row above. Each entry in Table 1.2,
except for the ones, is the sum of the entry directly above it to the left and the entry directly
above it to the right. We call this the Pascal Relationship, and it gives another way to compute
binomial coefficients without doing the multiplying and dividing in equation 1.5. If we wish to
compute many binomial coefficients, the Pascal relationship often yields a more efficient way to
do so. Once the coefficients in a row have been computed, the coefficients in the next row can be
computed using only one addition per entry.
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Table 1.2: Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

We now verify that the two methods for computing Pascal’s triangle always yield the same
result. In order to do so, we need an algebraic statement of the Pascal Relationship. In Table
1.1, each entry is the sum of the one above it and the one above it and to the left. In algebraic
terms, then, the Pascal Relationship says

(
n

k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
, (1.6)

whenever n > 0 and 0 < k < n. Notice that It is possible to give a purely algebraic (and rather
dreary) proof of this formula by plugging in our earlier formula for binomial coefficients into all
three terms and verifying that we get an equality. A guiding principle of discrete mathematics is
that when we have a formula that relates the numbers of elements of several sets, we should find
an explanation that involves a relationship among the sets.

A proof using sets

From Theorem 1.2 and Equation 1.5, we know that the expression
(n
k

)
is the number of k-element

subsets of an n element set. Each of the three terms in Equation 1.6 therefore represents the
number of subsets of a particular size chosen from an appropriately sized set. In particular,
the three sets are the set of k-element subsets of an n-element set, the set of (k − 1)-element
subsets of an (n − 1)-element set, and the set of k-element subsets of an (n − 1)-element set.
We should, therefore, be able to explain the relationship between these three quantities using
the sum principle. This explanation will provide a proof, just as valid a proof as an algebraic
derivation. Often, a proof using subsets will be less tedious, and will yield more insight into the
problem at hand.

Before giving such a proof in Theorem 1.3 below, we give an example. Suppose n = 5, k = 2.
Equation 1.6 says that (

5
2

)
=

(
4
1

)
+

(
4
2

)
. (1.7)

Because the numbers are small, it is simple to verify this by using the formula for binomial
coefficients, but let us instead consider subsets of a 5-element set. Equation 1.7 says that the
number of 2 element subsets of a 5 element set is equal to the number of 1 element subsets of
a 4 element set plus the number of 2 element subsets of a 4 element set. But to apply the sum
principle, we would need to say something stronger. To apply the sum principle, we should be
able to partition the set of 2 element subsets of a 5 element set into 2 disjoint sets, one of which
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has the same size as the number of 1 element subsets of a 4 element set and one of which has
the same size as the number of 2 element subsets of a 4 element set. Such a partition provides a
proof of Equation 1.7. Consider now the set S = {A, B, C, D, E}. The set of two element subsets
is

S1 = {{A, B}, {AC}, {A, D}, {A, E}, {B, C}, {B, D}, {B, E}, {C, D}, {C, E}, {D, E}}.

We now partition S1 into 2 blocks, S2 and S3. S2 contains all sets in S1 that do contain the
element E, while S3 contains all sets in S1 that do not contain the element E. Thus,

S2 = {{AE}, {BE}, {CE}, {DE}}

and
S3 = {{AB}, {AC}, {AD}, {BC}, {BD}, {CD}}.

Each set in S2 must contain E and then contains one other element from S. Since there are
4 other elements in S that we can choose along with E, |S2| =

(4
1

)
. Each set in S3 contains 2

elements from the set {A, B, C, D}, and thus there are
(4
2

)
ways to choose such a subset. But

S1 = S2 ∪ S3 and S2 and S3 are disjoint, and so, by the sum principle, Equation 1.7 must hold.

We now give a proof for general n and k.

Theorem 1.3 If n and k are integers with n > 0 and 0 < k < n, then
(

n

k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.

Proof: The formula says that the number of k-element subsets of an n-element set is the
sum of two numbers. As in our example, we will apply the sum principle. To apply it, we need
to represent the set of k-element subsets of an n-element set as a union of two other disjoint
sets. Suppose our n-element set is S = {x1, x2, . . . xn}. Then we wish to take S1, say, to be the(n
k

)
-element set of all k-element subsets of S and partition it into two disjoint sets of k-element

subsets, S2 and S3, where the sizes of S2 and S3 are
(n−1
k−1

)
and

(n−1
k

)
respectively. We can do this

as follows. Note that
(n−1

k

)
stands for the number of k element subsets of the first n− 1 elements

x1, x2, . . . , xn−1 of S. Thus we can let S3 be the set of k-element subsets of S that don’t contain
xn. Then the only possibility for S2 is the set of k-element subsets of S that do contain xn. How
can we see that the number of elements of this set S2 is

(n−1
k−1

)
? By observing that removing xn

from each of the elements of S2 gives a (k − 1)-element subset of S′ = {x1, x2, . . . xn−1}. Further
each (k − 1)-element subset of S′ arises in this way from one and only one k-element subset of
S containing xn. Thus the number of elements of S2 is the number of (k − 1)-element subsets
of S′, which is

(n−1
k−1

)
. Since S2 and S3 are two disjoint sets whose union is S, the sum principle

shows that the number of elements of S is
(n−1
k−1

)
+

(n−1
k

)
.

Notice that in our proof, we used a bijection that we did not explicitly describe. Namely,
there is a bijection f between S3 (the k-element sets of S that contain xn) and the (k−1)-element
subsets of S′. For any subset K in S3, We let f(K) be the set we obtain by removing xn from
K. It is immediate that this is a bijection, and so the bijection principle tells us that the size of
S3 is the size of the set of all subsets of S′.
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The Binomial Theorem

Exercise 1.3-3 What is (x + y)3? What is (x + 1)4? What is (2 + y)4? What is (x + y)4?

The number of k-element subsets of an n-element set is called a binomial coefficient because
of the role that these numbers play in the algebraic expansion of a binomial x+y. The Binomial
Theorem states that

Theorem 1.4 (Binomial Theorem) For any integer n ≥ 0

(x + y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · · +

(
n

n − 1

)
xyn−1 +

(
n

n

)
yn, (1.8)

or in summation notation,

(x + y)n =
n∑

i=0

(
n

i

)
xn−iyi .

Unfortunately when most people first see this theorem, they do not have the tools to see easily
why it is true. Armed with our new methodology of using subsets to prove algebraic identities,
we can give a proof of this theorem.

Let us begin by considering the example (x + y)3 which by the binomial theorem is

(x + y)3 =

(
3
0

)
x3 +

(
3
1

)
x2y +

(
3
2

)
xy2 +

(
3
3

)
y3 (1.9)

= x3 + 3x2y + 3xy2 + x3 . (1.10)

Suppose that we did not know the binomial theorem but still wanted to compute (x + y)3.
Then we would write out (x + y)(x + y)(x + y) and perform the multiplication. Probably we
would multiply the first two terms, obtaining x2 + 2xy + y2, and then multiply this expression
by x + y. Notice that by applying distributive laws you get

(x + y)(x + y) = (x + y)x + (x + y)y = xx + xy + yx + y. (1.11)

We could use the commutative law to put this into the usual form, but let us hold off for a
moment so we can see a pattern evolve. To compute (x + y)3, we can multiply the expression on
the right hand side of Equation 1.11 by x + y using the distributive laws to get

(xx + xy + yx + yy)(x + y) = (xx + xy + yx + yy)x + (xx + xy + yx + yy)y (1.12)
= xxx + xyx + yxx + yxx + xsy + xyy + yxy + yyy (1.13)

Each of these 8 terms that we got from the distributive law may be thought of as a product
of terms, one from the first binomial, one from the second binomial, and one from the third
binomial. Multiplication is commutative, so many of these products are the same. In fact, we
have one xxx or x3 product, three products with two x’s and one y, or x2y, three products with
one x and two y’s, or xy2 and one product which becomes y3. Now look at Equation 1.9, which
summarizes this process. There are

(3
0

)
= 1 way to choose a product with 3 x’s and 0 y’s,

(3
1

)
= 3

way to choose a product with 2 x’s and 1 y, etc. Thus we can understand the binomial theorem
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as counting the subsets of our binomial factors from which we choose a y-term to get a product
with k y’s in multiplying a string of n binomials.

Essentially the same explanation gives us a proof of the binomial theorem. Note that when we
multiplied out three factors of (x + y) using the distributive law but not collecting like terms, we
had a sum of eight products. Each factor of (x+y) doubles the number of summands. Thus when
we apply the distributive law as many times as possible (without applying the commutative law
and collecting like terms) to a product of n binomials all equal to (x+y), we get 2n summands.
Each summand is a product of a length n list of x’s and y’s. In each list, the ith entry comes
from the ith binomial factor. A list that becomes xn−kyk when we use the commutative law will
have a y in k of its places and an x in the remaining places. The number of lists that have a y
in k places is thus the number of ways to select k binomial factors to contribute a y to our list.
But the number of ways to select k binomial factors from n binomial factors is simply

(n
k

)
, and

so that is the coefficient of xn−kyk. This proves the binomial theorem.

Applying the Binomial Theorem to the remaining questions in Exercise 1.3-3 gives us

(x + 1)4 = x4 + 4x3 + 6x2 + 4x + 1
(2 + y)4 = 16 + 32y + 24y2 + 8y3 + y4 and
(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

Labeling and trinomial coefficients

Exercise 1.3-4 Suppose that I have k labels of one kind and n − k labels of another. In
how many different ways may I apply these labels to n objects?

Exercise 1.3-5 Show that if we have k1 labels of one kind, k2 labels of a second kind, and
k3 = n − k1 − k2 labels of a third kind, then there are n!

k1!k2!k3! ways to apply these
labels to n objects.

Exercise 1.3-6 What is the coefficient of xk1yk2zk3 in (x + y + z)n?

Exercise 1.3-4 and Exercise 1.3-5 can be thought of as immediate applications of binomial
coefficients. For Exercise 1.3-4, there are

(n
k

)
ways to choose the k objects that get the first label,

and the other objects get the second label, so the answer is
(n
k

)
. For Exercise 1.3-5, there are

( n
k1

)

ways to choose the k1 objects that get the first kind of label, and then there are
(n−k1

k2

)
ways to

choose the objects that get the second kind of label. After that, the remaining k3 = n − k1 − k2

objects get the third kind of label. The total number of labellings is thus, by the product principle,
the product of the two binomial coefficients, which simplifies as follows.

(
n

k1

)(
n − k1

k2

)
=

n!
k1!(n − k1)!

(n − k1)!
k2!(n − k1 − k2)!

=
n!

k1!k2!(n − k1 − k2)!

=
n!

k1!k2!k3!
.

A more elegant approach to Exercise 1.3-4, Exercise 1.3-5, and other related problems appears
in the next section.



1.3. BINOMIAL COEFFICIENTS 23

Exercise 1.3-6 shows how Exercise 1.3-5 applies to computing powers of trinomials. In ex-
panding (x + y + z)n, we think of writing down n copies of the trinomial x + y + z side by side,
and applying the distributive laws until we have a sum of terms each of which is a product of x’s,
y’s and z’s. How many such terms do we have with k1 x’s, k2 y’s and k3 z’s? Imagine choosing
x from some number k1 of the copies of the trinomial, choosing y from some number k2, and z
from the remaining k3 copies, multiplying all the chosen terms together, and adding up over all
ways of picking the kis and making our choices. Choosing x from a copy of the trinomial “labels”
that copy with x, and the same for y and z, so the number of choices that yield xk1yk2zk3 is
the number of ways to label n objects with k1 labels of one kind, k2 labels of a second kind,
and k3 labels of a third. Notice that this requires that k3 = n − k1 − k2. By analogy with our
notation for a binomial coefficient, we define the trinomial coefficient

( n
k1,k2,k3

)
to be n!

k1!k2!k3! if
k1 + k2 + k3 = n and 0 otherwise. Then

( n
k1,k2,k3

)
is the coefficient of xk1yk2zk3 in (x + y + z)n.

This is sometimes called the trinomial theorem.

Important Concepts, Formulas, and Theorems

1. Pascal Relationship. The Pascal Relationship says that

(
n

k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
,

whenever n > 0 and 0 < k < n.

2. Pascal’s Triangle. Pascal’s Triangle is the triangular array of numbers we get by putting
ones in row n and column 0 and in row n and column n of a table for every positive integer
n and then filling the remainder of the table by letting the number in row n and column j
be the sum of the numbers in row n − 1 and columns j − 1 and j whenever 0 < j < n.

3. Binomial Theorem. The Binomial Theorem states that for any integer n ≥ 0

(x + y)n = xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · · +

(
n

n − 1

)
xyn−1 +

(
n

n

)
yn ,

or in summation notation,

(x + y)n =
n∑

i=0

(
n

i

)
xn−iyi .

4. Labeling. The number of ways to apply k labels of one kind and n − k labels of another
kind to n objects is

(n
k

)
.

5. Trinomial coefficient. We define the trinomial coefficient
( n
k1,k2,k3

)
to be n!

k1!k2!k3! if k1 +k2 +
k3 = n and 0 otherwise.

6. Trinomial Theorem. The coefficient of xiyjzk in (x + y + z)n is
( n
i,j,k

)
.
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Problems

1. Find
(12

3

)
and

(12
9

)
. What can you say in general about

(n
k

)
and

( n
n−k

)
?

2. Find the row of the Pascal triangle that corresponds to n = 8.

3. Find the following

a. (x + 1)5

b. (x + y)5

c. (x + 2)5

d. (x − 1)5

4. Carefully explain the proof of the binomial theorem for (x + y)4. That is, explain what
each of the binomial coefficients in the theorem stands for and what powers of x and y are
associated with them in this case.

5. If I have ten distinct chairs to paint in how many ways may I paint three of them green,
three of them blue, and four of them red? What does this have to do with labellings?

6. When n1, n2, . . .nk are nonnegative integers that add to n, the number n!
n1!,n2!,...,nk! is

called a multinomial coefficient and is denoted by
( n
n1,n2,...,nk

)
. A polynomial of the form

x1 + x2 + · · · + xk is called a multinomial. Explain the relationship between powers of
a multinomial and multinomial coefficients. This relationship is called the Multinomial
Theorem.

7. Give a bijection that proves your statement about
(n
k

)
and

( n
n−k

)
in Problem 1 of this

section.

8. In a Cartesian coordinate system, how many paths are there from the origin to the point
with integer coordinates (m, n) if the paths are built up of exactly m + n horizontal and
vertical line segments each of length one?

9. What is the formula we get for the binomial theorem if, instead of analyzing the number
of ways to choose k distinct y’s, we analyze the number of ways to choose k distinct x’s?

10. Explain the difference between choosing four disjoint three element sets from a twelve
element set and labelling a twelve element set with three labels of type 1, three labels of
type two, three labels of type 3, and three labels of type 4. What is the number of ways of
choosing three disjoint four element subsets from a twelve element set? What is the number
of ways of choosing four disjoint three element subsets from a twelve element set?

11. A 20 member club must have a President, Vice President, Secretary and Treasurer as well
as a three person nominations committee. If the officers must be different people, and if
no officer may be on the nominating committee, in how many ways could the officers and
nominating committee be chosen? Answer the same question if officers may be on the
nominating committee.

12. Prove Equation 1.6 by plugging in the formula for
(n
k

)
.



1.3. BINOMIAL COEFFICIENTS 25

13. Give two proofs that (
n

k

)
=

(
n

n − k

)
.

14. Give at least two proofs that
(

n

k

)(
k

j

)
=

(
n

j

)(
n − j

k − j

)
.

15. Give at least two proofs that
(

n

k

)(
n − k

j

)
=

(
n

j

)(
n − j

k

)
.

16. You need not compute all of rows 7, 8, and 9 of Pascal’s triangle to use it to compute
(9
6

)
.

Figure out which entries of Pascal’s triangle not given in Table 2 you actually need, and
compute them to get

(9
6

)
.

17. Explain why
n∑

i=0

(−1)i

(
n

i

)
= 0

18. Apply calculus and the binomial theorem to (1 + x)n to show that
(

n

1

)
+ 2

(
n

2

)
+ 3

(
n

3

)
+ · · · = n2n−1.

19. True or False:
(n
k

)
=

(n−2
k−2

)
+

(n−2
k−1

)
+

(n−2
k

)
. If True, give a proof. If false, give a value of n

and k that show the statement is false, find an analogous true statement, and prove it.
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1.4 Equivalence Relations and Counting

Counting using Equivalence Classes

Consider again the example from Section 1.2 in which we wanted to count the number of 3
element subsets of a four element set. To do so, we first formed all possible lists of k = 3 distinct
elements chosen from an n = 4 element set. (See Equation 1.4.) The number of lists of k distinct
elements is nk = n!/(n − k)!. We then observed that two lists are equivalent as sets, if one can
be obtained by rearranging (or “permuting”) the other. This process divides the lists up into
classes, called equivalence classes, each of size k!. Returning to our example in Section 1.2, we
noted that one such equivalence class was

{134, 143, 314, 341, 413, 431} .

The other three are
{234, 243, 324, 342, 423, 432} ,

{132, 123, 312, 321, 213, 231} ,

and
{124, 142, 214, 241, 412, 421} .

The product principle told us that if q is the number of such equivalence class, if each equiva-
lence class has k! elements, and the entire set of lists has n!/(n− k)! element, then we must have
that

qk! = n!/(n − k)! .

Dividing, we solve for q and get an expression for the number of k element subsets of an n element
set. In fact, this is how we proved Theorem 1.2.

A principle that helps in learning and understanding mathematics is that if we have a math-
ematical result that shows a certain symmetry, it often helps our understanding to find a proof
that reflects this symmetry. We call this the Symmetry Principle. The proof above does not
account for the symmetry of the k! term and the (n − k)! term in the expression n!

k!(n−k)! . This
symmetry arises because choosing a k element subset is equivalent to choosing the (n−k)-element
subset of elements we don’t want. In Exercise 1.4-4, we saw that the binomial coefficient

(n
k

)
also

counts the number of ways to label n objects, say with the labels “in” and “out,” so that we have
k “ins” and therefore n − k “outs.” For each labelling, the k objects that get the label “in” are
in our subset. Here is a new proof that the number of labellings is n!/k!(n − k)! that explains
the symmetry.

Suppose we have m ways to assign k blue and n − k red labels to n elements. From each
labeling, we can create a number of lists, using the convention of listing the k blue elements first
and the remaining n− k red elements last. For example, suppose we are considering the number
of ways to label 3 elements blue (and 2 red) from a five element set {A, B, C, D, E}. Consider
the particular labelling in which A, B, and D are labelled blue and C and E are labelled red.
Which lists correspond to this labelling? They are

ABDCE ABDEC ADBCE ADBEC BADCE BADEC
BDACE BDAEC DABCE DABEC DBACE DBAEC
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that is, all lists in which A, B, and D precede C and E. Since there are 3! ways to arrange A,
B, and D, and 2! ways to arrange C and E, by the product principal, there are 3!2! = 12 lists in
which A, B, and D precede C and E. For each of the q ways to construct a labelling, we could
find a similar set of 12 lists that are associated with that labelling. Since every possible list of 5
elements will appear exactly once via this process, and since there are 5! = 120 five-element lists
overall, we must have by the product principle that

q · 12 = 120, (1.14)

or that q = 10. This agrees with our previous calculations of
(5
3

)
= 10 for the number of ways to

label 5 items so that 3 are blue and 2 are red.

Generalizing, we let q be the number of ways to label n objects with k blue labels and n − k
red labels. To create the lists associated with a labelling, we list the blue elements first and
then the red elements. We can mix the k blue elements among themselves, and we can mix the
n − k red elements among themselves, giving us k!(n − k)! lists consisting of first the elements
with a blue label followed by the elements with a red label. Since we can choose to label any
k elements blue, each of our lists of n distinct elements arises from some labelling in this way.
Each such list arises from only one labelling, because two different labellings will have a different
first k elements in any list that corresponds to the labelling. Each such list arises only once from
a given labelling, because two different lists that correspond to the same labelling differ by a
permutation of the first k places or the last n − k places or both. Therefore, by the product
principle, qk!(n − k)! is the number of lists we can form with n distinct objects, and this must
equal n!. This gives us

qk!(n − k)! = n!,

and division gives us our original formula for q. Recall that our proof of the formula we had in
Exercise 1.4-5 did not explain why the product of three factorials appeared in the denominator,
it simply proved the formula was correct. With this idea in hand, we could now explain why the
product in the denominator of the formula in Exercise 1.4-5 for the number of labellings with
three labels is what it is, and could generalize this formula to four or more labels.

Equivalence Relations

The process above divided the set of all n! lists of n distinct elements into classes (another word
for sets) of lists. In each class, all the lists are mutually equivalent, with respect to labeling with
two labels. More precisely, two lists of the n objects are equivalent for defining labellings if we
get one from the other by mixing the first k elements among themselves and mixing the last
n−k elements among themselves. Relating objects we want to count to sets of lists (so that each
object corresponds to an set of equivalent lists) is a technique we can use to solve a wide variety
of counting problems. (This is another example of abstraction.)

A relationship that divides a set up into mutually exclusive classes is called an equivalence
relation.7 Thus, if

S = S1 ∪ S2 ∪ . . . ∪ Sm

7The usual mathematical approach to equivalence relations, which we shall discuss in the exercises, is different
from the one given here. Typically, one sees an equivalence relation defined as a reflexive (everything is related to
itself), symmetric (if x is related to y, then y is related to x), and transitive (if x is related to y and y is related
to z, then x is related to z) relationship on a set X. Examples of such relationships are equality (on any set),
similarity (on a set of triangles), and having the same birthday as (on a set of people). The two approaches are
equivalent, and we haven’t found a need for the details of the other approach in what we are doing in this course.
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and Si ∩Sj = ∅ for all i and j with i �= j, then the relationship that says any two elements x ∈ S
and y ∈ S are equivalent if and only if they lie in the same set Si is an equivalence relation. The
sets Si are called equivalence classes, and, as we noted in Section 1.1 the family S1, S2, . . . , Sm is
called a partition of S. One partition of the set S = {a, b, c, d, e, f, g} is {a, c}, {d, g}, {b, e, f}.
This partition corresponds to the following (boring) equivalence relation: a and c are equivalent,
d and g are equivalent, and b, e, and f are equivalent. A slightly less boring equivalence relation
is that two letters are equivalent if typographically, their top and bottom are at the same height.
This give the partition {a, c, e}, {b, d}, {f}, {g}.

Exercise 1.4-1 On the set of integers between 0 and 12 inclusive, define two integers to be
related if they have the same remainder on division by 3. Which numbers are related
to 0? to 1? to 2? to 3? to 4?. Is this relationship an equivalence relation?

In Exercise 1.4-1, the numbers related to 0 are the set {0, 3, 6, 9, 12}, those related to 1 are
{1, 4, 7, 10}, those related to 2 are {2, 5, 8, 11}, those related to 3 are {0, 3, 6, 9, 12}, those related
to 4 are {1, 4, 7, 10}. A little more precisely, a number is related to one of 0, 3, 6, 9, or 12, if and
only if it is in the set {0, 3, 6, 9, 12}, a number is related to 1, 4, 7, or 10 if and only if it is in the
set {1, 4, 7, 10} and a number is related to 2, 5, 8, or 11 if and only if it is in the set {2, 5, 8, 11}.
Therefore the relationship is an equivalence relation.

The quotient principle

In Exercise 1.4-1 the equivalence classes had two different sizes. In the examples of counting
labellings and subsets that we have seen so far, all the equivalence classes had the same size, and
this was very important. The principle we have been using to count subsets and labellings is the
following theorem. We will call this principle the Quotient Principle.

Theorem 1.5 (Quotient principle) If an equivalence relation on a p-element set S has q
classes each of size r, then q = p/r.

Proof: By the product principle, p = qr, and so q = p/r.

Another statement of the quotient principle that uses the idea of a partition is

Principle 1.6 (Quotient principle.) If we can partition a set of size p into q blocks of size r,
then q = p/r.

Returning to our example of 3 blue and 2 red labels, s = 5! = 120, t = 12 and so by Theorem
1.5,

m =
s

t
=

120
12

= 10 .

Equivalence class counting

We now give several examples of the use of Theorem 1.5.
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Exercise 1.4-2 When four people sit down at a round table to play cards, two lists of
their four names are equivalent as seating charts if each person has the same person
to the right in both lists8. (The person to the right of the person in position 4 of
the list is the person in position 1). We will use Theorem 1.5 to count the number of
possible ways to seat the players. We will take our set S to be the set of all 4-element
permutations of the four people, i.e., the set of all lists of the four people.

(a) How many lists are equivalent to a given one?

(b) What are the lists equivalent to ABCD?

(c) Is the relationship of equivalence an equivalence relation?

(d) Use Theorem 1.5 to compute the number of equivalence classes, and hence, the
number of possible ways to seat the players.

Exercise 1.4-3 We wish to count the number of ways to attach n distinct beads to the
corners of a regular n-gon (or string them on a necklace). We say that two lists of
the n beads are equivalent if each bead is adjacent to exactly the same beads in both
lists. (The first bead in the list is considered to be adjacent to the last.)

• How does this exercise differ from the previous exercise?

• How many lists are in an equivalence class?

• How many equivalence classes are there?

In Exercise 1.4-2, suppose we have named the places at the table north, east, south, and west.
Given a list we get an equivalent one in two steps. First we observe that we have four choices of
people to sit in the north position. Then there is one person who can sit to this person’s right, one
who can be next on the right, and one who can be the following on on the right, all determined
by the original list. Thus there are exactly four lists equivalent to a given one, including that
given one. The lists equivalent to ABCD are ABCD, BCDA, CDAB, and DABC. This shows
that two lists are equivalent if and only if we can get one from the other by moving everyone the
same number of places to the right around the table (or we can get one from the other moving
everyone the same number of places to the left around the table). From this we can see we have
an equivalence relation, because each list is in one of these sets of four equivalent lists, and if
two lists are equivalent, they are right or left shifts of each other, and we’ve just observed that
all right and left shifts of a given list are in the same class. This means our relationship divides
the set of all lists of the four names into equivalence classes each of size four. There are a total
of 4! = 24 lists of four distinct names, and so by Theorem 1.5 we have 4!/4 = 3! = 6 seating
arrangements.

Exercise 1.4-3 is similar in many ways to Exercise 1.4-2, but there is one significant difference.
We can visualize the problem as one of dividing lists of n distinct beads up into equivalence classes,
but now two lists are equivalent if each bead is adjacent to exactly the same beads in both of
them. Suppose we number the vertices of our polygon as 1 through n clockwise. Given a list, we
can count the equivalent lists as follows. We have n choices for which bead to put in position 1.
Then either of the two beads adjacent to it in the given list can go in position 2. But now, only
one bead can go in position 3, because the other bead adjacent to position 2 is already in position

8Think of the four places at the table as being called north, east, south, and west, or numbered 1-4. Then
we get a list by starting with the person in the north position (position 1), then the person in the east position
(position 2) and so on clockwise
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1. We can continue in this way to fill in the rest of the list. For example, with n = 4, the lists
ABCD, ADBC, DABC DCBA, CDBA, CBAD, BCDA,and BADC are all equivalent. Notice the
first, third , fifth and seventh lists are obtained by shifting the beads around the polygon, as are
the second, fourth, sixth and eighth. Also note that the fourth list is the reversal of the first, the
fifth is the reversal of the second, and so on. Rotating a necklace in space corresponds to shifting
the letters in the list. Flipping a necklace over in space corresponds to reversing the order of a
list. There will always be 2n lists we can get by shifting and reversing shifts of a list. The lists
equivalent to a given one consist of everything we can get from the given list by rotations and
reversals. Thus the relationship of every bead being adjacent to the same beads divides the set
of lists of beads into disjoint sets. These sets, which have size 2n, are the equivalence classes of
our equivalence relation. Since there are n! lists, Theorem 1.5 says there are

n!
2n

=
(n − 1)!

2

bead arrangements.

Multisets

Sometimes when we think about choosing elements from a set, we want to be able to choose an
element more than once. For example the set of letters of the word “roof” is {f, o, r}. However
it is often more useful to think of the of the multiset of letters, which in this case is {{f, o, o, r}}.
We use the double brackets to distinguish a multiset from a set. We can specify a multiset chosen
from a set S by saying how many times each of its elements occurs. If S is the set of English
letters, the “multiplicity” function for roof is given by m(f) = 1, m(o) = 2, m(r) = 1, and
m(letter) = 0 for every other letter. In a multiset, order is not important, that is the multiset
{{r, o, f, o}} is equivalent to the multiset {{f, o, o, r}}. We know that this is the case, because
they each have the same multiplicity function. We would like to say that the size of {{f, o, o, r}}
is 4, so we define thesize of a multiset to be the sum of the multiplicities of its elements.

Exercise 1.4-4 Explain how placing k identical books onto the n shelves of a bookcase
can be thought of as giving us a k-element multiset of the shelves of the bookcase.
Explain how distributing k identical apples to n children can be thought of as giving
us a k-element multiset of the children.

In Exercise 1.4-4 we can think of the multiplicity of a bookshelf as the number of books it
gets and the multiplicity of a child as the number of apples the child gets. In fact, this idea of
distribution of identical objects to distinct recipients gives a great mental model for a multiset
chosen from a set S. Namely, to determine a k-element multiset chosen from S form S, we
“distribute” k identical objects to the elements of S and the number of objects an element x gets
is the multiplicity of x.

Notice that it makes no sense to ask for the number of multisets we may choose from a set
with n elements, because {{A}}, {{A, A}}, {{A, A, A}}, and so on are infinitely many multisets
chosen from the set {A}. However it does make sense to ask for the number of k-element multisets
we can choose from an n-element set. What strategy could we employ to figure out this number?
To count k-element subsets, we first counted k-element permutations, and then divided by the
number of different permutations of the same set. Here we need an analog of permutations that
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allows repeats. A natural idea is to consider lists with repeats. After all, one way to describe
a multiset is to list it, and there could be many different orders for listing a multiset. However
the two element multiset {{A, A}} can be listed in just one way, while the two element multiset
{{A, B}} can be listed in two ways. When we counted k-element subsets of an n-element set by
using the quotient principle, it was essential that each k-element set corresponded to the same
number (namely k!) of permutations (lists), because we were using the reasoning behind the
quotient principle to do our counting here. So if we hope to use similar reasoning, we can’t apply
it to lists because different k-element multisets can correspond to different numbers of lists.

Suppose, however, we could count the number of ways to arrange k distinct books on the
n shelves of a bookcase. We can still think of the multiplicity of a shelf as being the number
of books on it. However, many different arrangements of distinct books will give us the same
multiplicity function. In fact, any way of mixing the books up among themselves that does not
change the number of books on each shelf will give us the same multiplicities. But the number of
ways to mix the books up among themselves is the number of permutations of the books, namely
k!. Thus it looks like we have an equivalence relation on the arrangements of distinct books on
a bookshelf such that

1. Each equivalence class has k! elements, and

2. There is a bijection between the equivalence classes and k-element multisets of the n shelves.

Thus if we can compute the number of ways to arrange k distinct books on the n shelves of a
bookcase, we should be able to apply the quotient principle to compute the number of k-element
multisets of an n-element set.

The bookcase arrangement problem.

Exercise 1.4-5 We have k books to arrange on the n shelves of a bookcase. The order in
which the books appear on a shelf matters, and each shelf can hold all the books. We
will assume that as the books are placed on the shelves they are moved as far to the
left as they will go so that all that matters is the order in which the books appear
and not the actual places where the books sit. When book i is placed on a shelf, it
can go between two books already there or to the left or right of all the books on that
shelf.

(a) Since the books are distinct, we may think of a first, second, third, etc. book.
In how many ways may we place the first book on the shelves.

(b) Once the first book has been placed, in how many ways may the second book
be placed?

(c) Once the first two books have been placed, in how many ways may the third
book be placed?

(d) Once i − 1 books have been placed, book i can be placed on any of the shelves
to the left of any of the books already there, but there are some additional ways
in which it may be placed. In how many ways in total may book i be placed?

(e) In how many ways may k distinct books be place on n shelves in accordance
with the constraints above?
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In Exercise 1.4-5 there are n places where the first book can go, namely on the left side of
any shelf. Then the next book can go in any of the n places on the far left side of any shelf,
or it can go to the right of book one. Thus there are n + 1 places where book 2 can go. At
first, placing book three appears to be more complicated, because we could create two different
patterns by placing the first two books. However book 3 could go to the far left of any shelf or to
the immediate right of any of the books already there. (Notice that if book 2 and book 1 are on
shelf 3 in that order, putting book 3 to the immediate right of book 2 means putting it between
book 2 and book 1.) Thus in any case, there are n+2 ways to place book 3. Similarly, once i− 1
books have been placed, there are n + i − 1 places where we can place book i. It can go at the
far left of any of the n shelves or to the immediate right of any of the i − 1 books that we have
already placed. Thus the number of ways to place k distinct books is

n(n + 1)(n + 2) · · · (n + k − 1) =
k∏

i=1

(n + i − 1) =
k−1∏

j=0

(n + j) =
(n + k − 1)!

(n − 1)!
. (1.15)

The Pi notation (also known as the product notation) we introduced for the product in Equa-
tion 1.15 is completely analogous to the Sigma notation we have learned to use for summation.
The specific product that arose in Equation 1.15 is called a rising factorial power. It has a nota-
tion (also introduced by Don Knuth) analogous to that for the falling factorial notation. Namely,
we write

nk = n(n + 1) · · · (n + k − 1) =
k∏

i=1

(n + i − 1).

This is the product of k successive numbers beginning with n.

Since the last expression in Equation 1.15 is quotient of two factorials it is natural to ask
whether it is counting equivalence classes of an equivalence relation. If so, the set on which the
relation is defined has size (n + k − 1)!. Thus it might be all lists or permutations of n + k − 1
distinct objects. The size of an equivalence class is (n−1)! and so what makes two lists equivalent
might be permuting n− 1 of the objects among themselves. Can we find such an interpretation?

Exercise 1.4-6 In how many ways may we arrange k distinct books and n − 1 identical
blocks of wood in a straight line?

Exercise 1.4-7 How does Exercise 1.4-6 relate to arranging books on the shelves of a
bookcase?

In Exercise 1.4-6, if we tape numbers to the wood so that so that the pieces of wood are
distinguishable, there are n + k − 1 arrangements of the books and wood. But since the pieces
of wood are actually indistinguishable, (n − 1)! of these arrangements are equivalent. Thus by
the quotient principle there are (n + k − 1)!/(n− 1)! arrangements. Such an arrangement allows
us to put the books on the shelves as follows: put all the books before the first piece of wood
on shelf 1, all the books between the first and second on shelf 2, and so on until you put all the
books after the last piece of wood on shelf n.

The number of k-element multisets of an n-element set

We now define two bookcase arrangements of k books on n shelves to be equivalent if we get one
from the other by permuting the books among themselves. Thus if two arrangements put the
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same number of books on each shelf they are put into the same class by this relationship. On the
other hand, if two arrangements put a different number of books on at least one shelf, they are
not equivalent, and therefore they are put into different classes by this relationship. Thus the
classes into which this relationship divides the the arrangements are disjoint and partition the
set of all arrangements. Each class has k! arrangements in it. The set of all arrangements has nk

arrangements in it. This leads to the following theorem.

Theorem 1.6 The number of k-element multisets chosen from an n-element set is

nk

k!
=

(
n + k − 1

k

)
.

Proof: The relationship on bookcase arrangements that two relationships are equivalent if
and only if we get one from the other by permuting the books is an equivalence relation. The set
of all arrangements has nk elements, and the number of elements in an equivalence class is k!.
By the quotient principle, the number of equivalence classes is nk

k! . There is a bijection between
equivalence classes of bookcase arrangements with k books and multisets with k elements. The
second equality follows from the definition of binomial coefficients.

The right-hand side of the formula is a binomial coefficient, so it is natural to ask whether there
is a way to interpret choosing a k-element multiset form an n-element set as choosing a k-element
subset of some different n + k − 1-element set. This illustrates an important principle. When we
have a quantity that turns our to be equal to a binomial coefficient, it helps our understanding
to interpret it as counting the number of ways to choose a subset of an appropriate size from a
set of an appropriate size. We explore this idea for multisets in Problem 8 in this section.

Important Concepts, Formulas, and Theorems

1. Symmetry Principle. If we have a mathematical result that shows a certain symmetry, it
often helps our understanding to find a proof that reflects this symmetry.

2. Partition. Given a set S of items, a partition of S consists of m sets S1, S2, . . . , Sm, some-
times called blocks so that S1∪S2∪· · ·∪Sm = S and for each i and j with i �= j, Si∩Sj = ∅.

3. Equivalence relation. Equivalence class. A relationship that partitions a set up into mutu-
ally exclusive classes is called an equivalence relation. Thus if S = S1∪S2∪ . . .∪Sm is a
partition of S, the relationship that says any two elements x ∈ S and y ∈ S are equivalent
if and only if they lie in the same set Si is an equivalence relation. The sets Si are called
equivalence classes

4. Quotient principle. The quotient principle says that if we can partition a set of p objects
up into q classes of size r, then q = p/r. Equivalently, if an equivalence relation on a set of
size p has q equivalence classes of size r, then q = p/r. The quotient principle is frequently
used for counting the number of equivalence classes of an equivalence relation. When we
have a quantity that is a quotient of two others, it is often helpful to our understanding to
find a way to use the quotient principle to explain why we have this quotient.

5. Multiset. A multiset is similar to a set except that each item can appear multiple times. We
can specify a multiset chosen from a set S by saying how many times each of its elements
occurs.
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6. Choosing k-element multisets. The number of k-element multisets that can be chosen from
an n-element set is

(n + k − 1)!
k!(n − 1)!

=

(
n + k − 1

k

)
.

This is sometimes called the formula for “combinations with repetitions.”

7. Product notation, Pi notation The notation
∏n

i=1 ai means the product of the quantities a1

through ai; that is, a1a2 · · · an.

8. When we have a quantity that turns out to be a binomial coefficient (or some other formula
we recognize) it is often helpful to our understanding to try to interpret the quantity as
the result of choosing a subset of a set (or doing whatever the formula that we recognize
counts.)

Problems

1. In how many ways may n people be seated around a round table? (Remember, two seating
arrangements around a round table are equivalent if everyone is in the same position relative
to everyone else in both arrangements.)

2. In how many ways may we embroider n circles of different colors in a row (lengthwise,
equally spaced, and centered halfway between the top and bottom edges) on a scarf (as
follows)?

� � � � � �

3. Use binomial coefficients to determine in how many ways three identical red apples and
two identical golden apples may be lined up in a line. Use equivalence class counting (in
particular, the quotient principle) to determine the same number.

4. Use multisets to determine the number of ways to pass out k identical apples to n children.

5. In how many ways may n men and n women be seated around a table alternating gender?
(Use equivalence class counting!!)

6. In how many ways may we pass out k identical apples to n children if each child must get
at least one apple?

7. In how many ways may we place k distinct books on n shelves of a bookcase (all books
pushed to the left as far as possible) if there must be at least one book on each shelf?

8. The formula for the number of multisets is (n + k − 1)! divided by a product of two other
factorials. We seek an explanation using the quotient principle of why this counts multisets.
The formula for the number of multisets is also a binomial coefficient, so it should have an
interpretation involving choosing k items from n + k − 1 items. The parts of the problem
that follow lead us to these explanations.
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(a) In how many ways may we place k red checkers and n − 1 black checkers in a row?
(b) How can we relate the number of ways of placing k red checkers and n − 1 black

checkers in a row to the number of k-element multisets of an n-element set, say the
set {1, 2, . . . , n} to be specific?

(c) How can we relate the choice of k items out of n+ k− 1 items to the placement of red
and black checkers as in the previous parts of this problem?

9. How many solutions to the equation x1 + x2 + · · ·xn = k are there with each xi ≥ 0?

10. How many solutions to the equation x1 + x2 + · · ·xn = k are there with each xi > 0?

11. In how many ways may n red checkers and n + 1 black checkers be arranged in a circle?
(This number is a famous number called a Catalan number.)

12. A standard notation for the number of partitions of an n element set into k classes is
S(n, k). S(0, 0) is 1, because technically the empty family of subsets of the empty set is a
partition of the empty set, and S(n, 0) is 0 for n > 0, because there are no partitions of a
nonempty set into no parts. S(1, 1) is 1.

(a) Explain why S(n, n) is 1 for all n > 0. Explain why S(n, 1) is 1 for all n > 0.
(b) Explain why, for 1 < k < n, S(n, k) = S(n − 1, k − 1) + kS(n − 1, k).
(c) Make a table like our first table of binomial coefficients that shows the values of S(n, k)

for values of n and k ranging from 1 to 6.

13. You are given a square, which can be rotated 90 degrees at a time (i.e. the square has
four orientations). You are also given two red checkers and two black checkers, and you
will place each checker on one corner of the square. How many lists of four letters, two of
which are R and two of which are B, are there? Once you choose a starting place on the
square, each list represents placing checkers on the square in clockwise order. Consider two
lists to be equivalent if they represent the same arrangement of checkers at the corners of
the square, that is, if one arrangement can be rotated to create the other one. Write down
the equivalence classes of this equivalence relation. Why can’t we apply Theorem 1.5 to
compute the number of equivalence classes?

14. The terms “reflexive”, “symmetric” and “transitive” were defined in Footnote 2. Which of
these properties is satisfied by the relationship of “greater than?” Which of these properties
is satisfied by the relationship of “is a brother of?” Which of these properties is satisfied
by “is a sibling of?” (You are not considered to be your own brother or your own sibling).
How about the relationship “is either a sibling of or is?”

a Explain why an equivalence relation (as we have defined it) is a reflexive, symmetric,
and transitive relationship.

b Suppose we have a reflexive, symmetric, and transitive relationship defined on a set
S. For each x is S, let Sx = {y|y is related to x}. Show that two such sets Sx and
Sy are either disjoint or identical. Explain why this means that our relationship is
an equivalence relation (as defined in this section of the notes, not as defined in the
footnote).

c Parts b and c of this problem prove that a relationship is an equivalence relation if
and only if it is symmetric, reflexive, and transitive. Explain why. (A short answer is
most appropriate here.)
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15. Consider the following C++ function to compute
(n
k

)
.

int pascal(int n, int k)
{
if (n < k)
{

cout << "error: n<k" << endl;
exit(1);

}

if ( (k==0) || (n==k))
return 1;

return pascal(n-1,k-1) + pascal(n-1,k);
}

Enter this code and compile and run it (you will need to create a simple main program that
calls it). Run it on larger and larger values of n and k, and observe the running time of the
program. It should be surprisingly slow. (Try computing, for example,

(30
15

)
.) Why is it so

slow? Can you write a different function to compute
(n
k

)
that is significantly faster? Why

is your new version faster? (Note: an exact analysis of this might be difficult at this point
in the course, it will be easier later. However, you should be able to figure out roughly why
this version is so much slower.)

16. Answer each of the following questions with either nk, nk,
(n
k

)
, or

(n+k−1
k

)
.

(a) In how many ways can k different candy bars be distributed to n people (with any
person allowed to receive more than one bar)?

(b) In how many ways can k different candy bars be distributed to n people (with nobody
receiving more than one bar)?

(c) In how many ways can k identical candy bars distributed to n people (with any person
allowed to receive more than one bar)?

(d) In how many ways can k identical candy bars distributed to n people (with nobody
receiving more than one bar)?

(e) How many one-to-one functions f are there from {1, 2, . . . , k} to {1, 2, . . . , n} ?

(f) How many functions f are there from {1, 2, . . . , k} to {1, 2, . . . , n} ?

(g) In how many ways can one choose a k-element subset from an n-element set?

(h) How many k-element multisets can be formed from an n-element set?

(i) In how many ways can the top k ranking officials in the US government be chosen
from a group of n people?

(j) In how many ways can k pieces of candy (not necessarily of different types) be chosen
from among n different types?

(k) In how many ways can k children each choose one piece of candy (all of different types)
from among n different types of candy?



Chapter 2

Cryptography and Number Theory

2.1 Cryptography and Modular Arithmetic

Introduction to Cryptography

For thousands of years people have searched for ways to send messages secretly. There is a story
that, in ancient times, a king needed to send a secret message to his general in battle. The king
took a servant, shaved his head, and wrote the message on his head. He waited for the servant’s
hair to grow back and then sent the servant to the general. The general then shaved the servant’s
head and read the message. If the enemy had captured the servant, they presumably would not
have known to shave his head, and the message would have been safe.

Cryptography is the study of methods to send and receive secret messages. In general, we
have a sender who is trying to send a message to a receiver. There is also an adversary, who
wants to steal the message. We are successful if the sender is able to communicate a message to
the receiver without the adversary learning what that message was.

Cryptography has remained important over the centuries, used mainly for military and diplo-
matic communications. Recently, with the advent of the internet and electronic commerce,
cryptography has become vital for the functioning of the global economy, and is something that
is used by millions of people on a daily basis. Sensitive information such as bank records, credit
card reports, passwords, or private communication, is (and should be) encrypted—modified in
such a way that, hopefully, it is only understandable to people who should be allowed to have
access to it, and undecipherable to others.

Undecipherability by an adversary is, of course, a difficult goal. No code is completely undeci-
pherable. If there is a printed “codebook,” then the adversary can always steal the codebook, and
no amount of mathematical sophistication can prevent this possibility. More likely, an adversary
may have extremely large amounts of computing power and human resources to devote to trying
to crack a code. Thus our notion of security is tied to computing power – a code is only as safe
as the amount of computing power needed to break it. If we design codes that seem to need
exceptionally large amounts of computing power to break, then we can be relatively confident in
their security.
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Private Key Cryptography

Traditional cryptography is known as private key cryptography. The sender and receiver agree
in advance on a secret code, and then send messages using that code. For example, one of the
oldest codes is known as a Caesar cipher. In this code, the letters of the alphabet are shifted by
some fixed amount. Typically, we call the original message the plaintext and the encoded text
the ciphertext. An example of a Caesar cipher would be the following code:

plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
ciphertext E F G H I J K L M N O P Q R S T U V W X Y Z A B C D .

Thus if we wanted to send the plaintext message

ONE IF BY LAND AND TWO IF BY SEA ,

we would send the ciphertext

SRI MJ FC PERH ERH XAS MJ FC WIE .

A Caeser cipher is especially easy to implement on a computer using a scheme known as
arithmetic mod 26. The symbolism

m mod n

means the remainder we get when we divide m by n. A bit more precisely, for integers m and n,
m mod n is the smallest nonnegative integer r such that

m = nq + r (2.1)

for some integer q. We will refer to the fact that m mod n is always well defined as Euclid’s
division theorem. The proof appears in the next section.1

Theorem 2.1 (Euclid’s division theorem) For every integer m and positive integer n, there
exist unique integers q and r such that m = nq + r and 0 ≤ r < n. Furthermore, r is equal to
m mod n.

Exercise 2.1-1 Use Equation 2.1 to compute 10 mod 7 and −10 mod 7. What are q and
r in each case? Does (−m) mod n = −(m mod n)?

Exercise 2.1-2 Using 0 for A, 1 for B, and so on, let the numbers from 0 to 25 stand for
the letters of the alphabet. In this way, convert a message to a sequence of strings of
numbers. For example SEA becomes 18 4 0. What does (the numerical representation
of) this word become if we shift every letter two places to the right? What if we shift
every letter 13 places to the right? How can you use the idea of m mod n to implement
a Caeser cipher?

1In an unfortunate historical evolution of terminology, the fact that for every nonnegative integer m and positive
integer n, there exist unique nonnegative integers q and r such that m = nq + r and r < n is called “Euclid’s
algorithm.” In modern language we would call this “Euclid’s Theorem” instead. While it seems obvious that there is
such a smallest nonnegative integer r and that there is exactly one such pair q, r with r < n, a technically complete
study would derive these facts from the basic axioms of number theory, just as “obvious” facts of geometry are
derived from the basic axioms of geometry. The reasons why mathematicians take the time to derive such obvious
facts from basic axioms is so that everyone can understand exactly what we are assuming as the foundations of
our subject; as the “rules of the game” in effect.
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Exercise 2.1-3 Have someone use a Caeser cipher to encode a message of a few words in
your favorite natural language, without telling you how far they are shifting the letters
of the alphabet. How can you figure out what the message is? Is this something a
computer could do quickly?

In Exercise 2.1-1, 10 = 7(1)+3 and so 10 mod 7 is 3, while −10 = 7(−2)+4 and so −10 mod 7
is 4. These two calculations show that (−m) mod n = −(m mod n) is not necessarily true. Note
that −3 mod 7 is 4 also. Furthermore, −10 + 3 mod 7 = 0, suggesting that −10 is essentially the
same as −3 when we are considering integers mod 7.

In Exercise 2.1-2, to shift each letter two places to the right, we replace each number n in our
message by (n+2) mod 26, so that SEA becomes 20 8 2. To shift 13 places to the right, we replace
each number n in our message with (n + 13) mod 26 so that SEA becomes 5 17 13. Similarly to
implement a shift of s places, we replace each number n in our message by (n+ s) mod 26. Since
most computer languages give us simple ways to keep track of strings of numbers and a “mod
function,” it is easy to implement a Caeser cipher on a computer.

Exercise 2.1-3 considers the complexity of encoding, decoding and cracking a Ceasar cipher.
Even by hand, it is easy for the sender to encode the message, and for the receiver to decode the
message. The disadvantage of this scheme is that it is also easy for the adversary to just try the
26 different possible Caesar ciphers and decode the message. (It is very likely that only one will
decode into plain English.) Of course, there is no reason to use such a simple code; we can use
any arbitrary permutation of the alphabet as the ciphertext, e.g.

plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
ciphertext H D I E T J K L M X N Y O P F Q R U V W G Z A S B C

If we encode a short message with a code like this, it would be hard for the adversary to decode it.
However, with a message of any reasonable length (greater than about 50 letters), an adversary
with a knowledge of the statistics of the English language can easily crack the code. (These codes
appear in many newspapers and puzzle books under the name cryptograms. Many people are
able to solve these puzzles, which is compelling evidence of the lack of security in such a code.)

We do not have to use simple mappings of letters to letters. For example, our coding algorithm
can be to

• take three consecutive letters,

• reverse their order,

• interpret each as a base 26 integer (with A=0; B=1, etc.),

• multiply that number by 37,

• add 95 and then

• convert that number to base 8.

We continue this processing with each block of three consecutive letters. We append the blocks,
using either an 8 or a 9 to separate the blocks. When we are done, we reverse the number, and
replace each digit 5 by two 5’s. Here is an example of this method:
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plaintext: ONEIFBYLANDTWOIFBYSEA

block and reverse: ENO BFI ALY TDN IOW YBF AES
base 26 integer: 3056 814 310 12935 5794 16255 122
*37 +95 base 8: 335017 73005 26455 1646742 642711 2226672 11001
appended : 33501787300592645591646742964271182226672811001
reverse, 5rep : 10011827662228117246924764619555546295500378710533

As Problem 18 shows, a receiver who knows the code can decode this message. Furthermore,
a casual reader of the message, without knowledge of the encryption algorithm, would have no
hope of decoding the message. So it seems that with a complicated enough code, we can have
secure cryptography. Unfortunately, there are at least two flaws with this method. The first is
that if the adversary learns, somehow, what the code is, then she can easily decode it. Second, if
this coding scheme is repeated often enough, and if the adversary has enough time, money and
computing power, this code could be broken. In the field of cryptography, some entities have all
these resources (such as a government, or a large corporation). The infamous German Enigma
code is an example of a much more complicated coding scheme, yet it was broken and this helped
the Allies win World War II. (The reader might be interested in looking up more details on this;
it helped a lot in breaking the code to have a stolen Enigma machine, though even with the
stolen machine, it was not easy to break the code.) In general, any scheme that uses a codebook,
a secretly agreed upon (possibly complicated) code, suffers from these drawbacks.

Public-key Cryptosystems

A public-key cryptosystem overcomes the problems associated with using a codebook. In a public-
key cryptosystem, the sender and receiver (often called Alice and Bob respectively) don’t have
to agree in advance on a secret code. In fact, they each publish part of their code in a public
directory. Further, an adversary with access to the encoded message and the public directory
still cannot decode the message.

More precisely, Alice and Bob will each have two keys, a public key and a secret key. We will
denote Alice’s public and secret keys as KPA and KSA and Bob’s as KPB and KSB. They each
keep their secret keys to themselves, but can publish their public keys and make them available
to anyone, including the adversary. While the key published is likely to be a symbol string of
some sort, the key is used in some standardized way (we shall see examples soon) to create a
function from the set D of possible messages onto itself. (In complicated cases, the key might be
the actual function). We denote the functions associated with KSA, KPA, KSB and KPB by
SA, PA, SB, and PB, respectively. We require that the public and secret keys are chosen so that
the corresponding functions are inverses of each other, i.e for any message M ∈ D we have that

M = SA(PA(M)) = PA(SA(M)), and (2.2)
M = SB(PB(M)) = PB(SB(M)). (2.3)

We also assume that, for Alice, SA and PA are easily computable. However, it is essential that
for everyone except Alice, SA is hard to compute, even if you know PA. At first glance, this may
seem to be an impossible task, Alice creates a function PA, that is public and easy to compute
for everyone, yet this function has an inverse, SA, that is hard to compute for everyone except
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Alice. It is not at all clear how to design such a function. In fact, when the idea for public
key cryptography was proposed (by Diffie and Hellman2), no one knew of any such functions.
The first complete public-key cryptosystem is the now-famous RSA cryptosystem, widely used
in many contexts. To understand how such a cryptosystem is possible requires some knowledge
of number theory and computational complexity. We will develop the necessary number theory
in the next few sections.

Before doing so, let us just assume that we have such a function and see how we can make
use of it. If Alice wants to send Bob a message M , she takes the following two steps:

1. Alice obtains Bob’s public key PB.

2. Alice applies Bob’s public key to M to create ciphertext C = PB(M).

Alice then sends C to Bob. Bob can decode the message by using his secret key to compute
SB(C) which is identical to SB(PB(M)), which by (2.3) is identical to M , the original message.
The beauty of the scheme is that even if the adversary has C and knows PB, she cannot decode
the message without SB, since SB is a secret that only Bob has. Even though the adversary
knows that SB is the inverse of PB, the adversary cannot easily compute this inverse.

Since it is difficult, at this point, to describe an example of a public key cryptosystem that is
hard to decode, we will give an example of one that is easy to decode. Imagine that our messages
are numbers in the range 1 to 999. Then we can imagine that Bob’s public key yields the function
PB given by PB(M) = rev(1000 − M), where rev() is a function that reverses the digits of a
number. So to encrypt the message 167, Alice would compute 1000−167 = 833 and then reverse
the digits and send Bob C = 338. In this case SB(C) = 1000 − rev(C), and Bob can easily
decode. This code is not secure, since if you know PB, you can figure out SB. The challenge is to
design a function PB so that even if you know PB and C = PB(M), it is exceptionally difficult
to figure out what M is.

Arithmetic modulo n

The RSA encryption scheme is built upon the idea of arithmetic mod n, so we introduce this
arithmetic now. Our goal is to understand how the basic arithmetic operations, addition, sub-
traction, multiplication, division, and exponentiation behave when all arithmetic is done mod
n. As we shall see, some of the operations, such as addition, subtraction and multiplication,
are straightforward to understand. Others, such as division and exponentiation, behave very
differently than they do for normal arithmetic.

Exercise 2.1-4 Compute 21 mod 9, 38 mod 9, (21 · 38) mod 9, (21 mod 9) · (38 mod 9),
(21 + 38) mod 9, (21 mod 9) + (38 mod 9).

Exercise 2.1-5 True or false: i mod n = (i + 2n) mod n; i mod n = (i − 3n) mod n

In Exercise 2.1-4, the point to notice is that

21 · 38 mod 9 = (21 mod 9)(38 mod 9)
2Whitfield Diffie and Martin Hellman. “New directions in cryptography” IEEE Transactions on Information

Theory , IT-22(6) pp 644-654, 1976.
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and
21 + 38 mod 9 = (21 mod 9) + (38 mod 9).

These equations are very suggestive, though the general equations that they first suggest aren’t
true! Some closely related equations are true as we shall soon see.

Exercise 2.1-5 is true in both cases, as adding multiples of n to i does not change the value
of i mod n. In general, we have

Lemma 2.2 i mod n = (i + kn) mod n for any integer k.

Proof: By Theorem 2.1, for unique integers q and r, with 0 ≤ r < n, we have

i = nq + r . (2.4)

Adding kn to both sides of Equation 2.4, we obtain

i + kn = n(q + k) + r . (2.5)

Applying the definition of i mod n to Equation 2.4, we have that r = i mod n and applying the
same definition to Equation 2.5 we have that r = (i + kn) mod n. The lemma follows.

Now we can go back to the equations of Exercise 2.1-4; the correct versions are stated below.
Informally, we are showing if we have a computation involving addition and multiplication, and
we plan to take the end result mod n, then we are free to take any of the intermediate results
mod n also.

Lemma 2.3

(i + j) mod n = [i + (j mod n)] mod n

= [(i mod n) + j] mod n

= [(i mod n) + (j mod n)] mod n

(i · j) mod n = [i · (j mod n)] mod n

= [(i mod n) · j] mod n

= [(i mod n) · (j mod n)] mod n

Proof: We prove the first and last terms in the sequence of equations for plus are equal; the
other equalities for plus follow by similar computations. The proofs of the equalities for products
are similar.

By Theorem 2.1, we have that for unique integers q1 and q2,

i = (i mod n) + q1n and j = (j mod n) + q2n .

Then adding these two equations together mod n, and using Lemma 2.2, we obtain

(i + j) mod n = [(i mod n) + q1n + (j mod n) + q2n)] mod n

= [(i mod n) + (j mod n) + n(q1 + q2)] mod n

= [(i mod n) + (j mod n)] mod n .
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We now introduce a convenient notation for performing modular arithmetic. We will use the
notation Zn to represent the integers 0, 1, . . . , n−1 together with a redefinition of addition, which
we denote by +n, and a redefinition of multiplication, which we denote ·n. The redefinitions are:

i +n j = (i + j) mod n (2.6)
i ·n j = (i · j) mod n (2.7)

We will use the expression “x ∈ Zn” to mean that x is a variable that can take on any of
the integral values between 0 and n − 1. In addition, x ∈ Zn is a signal that if we do algebraic
operations with x, we are will use +n and ·n rather than the usual addition and multiplication.
In ordinary algebra it is traditional to use letters near the beginning of the alphabet to stand
for constants; that is, numbers that are fixed throughout our problem and would be known in
advance in any one instance of that problem. This allows us to describe the solution to many
different variations of a problem all at once. Thus we might say “For all integers a and b, there
is one and only one integer x that is a solution to the equation a + x = b, namely x = b − a.”
We adopt the same system for Zn. When we say “Let a be a member of Zn,” we mean the same
thing as “Let a be an integer between 0 and n − 1,” but we are also signaling that in equations
involving a, we will use +n and ·n.

We call these new operations addition mod n and multiplication mod n. We must now
verify that all the “usual” rules of arithmetic that normally apply to addition and multiplication
still apply with +n and ·n. In particular, we wish to verify the commutative, associative and
distributive laws.

Theorem 2.4 Addition and multiplication mod n satisfy the commutative and associative laws,
and multiplication distributes over addition.

Proof: Commutativity follows immediately from the definition and the commutativity of
ordinary addition and multiplication. We prove the associative law for addition in the following
equations; the other laws follow similarly.

a +n (b +n c) = (a + (b +n c)) mod n (Equation 2.6)
= (a + ((b + c) mod n)) mod n (Equation 2.6)
= (a + (b + c)) mod n (Lemma 2.3)
= ((a + b) + c) mod n (Associative law for ordinary sums)
= ((a + b) mod n + c) mod n (Lemma 2.3)
= ((a +n b) + c) mod n (Equation 2.6)
= (a +n b) +n c (Equation 2.6).

Notice that 0 +n i = i, 1 ·n i = i, (these equations are called the additive identity properties
and the multiplicative identity properties) and 0 ·n i = 0, so we can use 0 and 1 in algebraic
expressions in Zn (which we may also refer to as agebraic expressions mod n) as we use them in
ordinary algebraic expressions. We use a −n b to stand for a +n (−b).

We conclude this section by observing that repeated applications of Lemma 2.3 and Theorem
2.4 are useful when computing sums or products mod n in which the numbers are large. For
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example, suppose you had m integers x1, . . . , xm and you wanted to compute (
∑m

j=1 xi) mod n.
One natural way to do so would be to compute the sum, and take the result modulo n. However,
it is possible that, on the computer that you are using, even though (

∑m
j=1 xi) mod n is a number

that can be stored in an integer, and each xi can be stored in an integer,
∑m

j=1 xi might be too
large to be stored in an integer. (Recall that integers are typically stored as 4 or 8 bytes, and
thus have a maximum value of roughly 2 × 109 or 9 × 1018.) Lemma 2.3 tells us that if we are
computing a result mod n, we may do all our calculations in Zn using +n and ·n, and thus never
computing an integer that has significantly more digits than any of the numbers we are working
with.

Cryptography using addition mod n

One natural way to use addition of a number a mod n in encryption is first to convert the
message to a sequence of digits—say concatenating all the ASCII codes for all the symbols
in the message—and then simply add a to the message mod n. Thus P (M) = M +n a and
S(C) = C +n (−a) = C−n a. If n happens to be larger than the message in numerical value, then
it is simple for someone who knows a to decode the encrypted message. However an adversary
who sees the encrypted message has no special knowledge and so unless a was ill chosen (for
example having all or most of the digits be zero would be a silly choice) the adversary who knows
what system you are using, even including the value of n, but does not know a, is essentially
reduced to trying all possible a values. (In effect adding a appears to the adversary much like
changing digits at random.) Because you use a only once, there is virtually no way for the
adversary to collect any data that will aid in guessing a. Thus, if only you and your intended
recipient know a, this kind of encryption is quite secure: guessing a is just as hard as guessing
the message.

It is possible that once n has been chosen, you will find you have a message which translates
to a larger number than n. Normally you would then break the message into segments, each with
no more digits than n, and send the segments individually. It might seem that as long as you
were not sending a large number of segments, it would still be quite difficult for your adversary
to guess a by observing the encrypted information. However if your adversary knew n but not
a and knew you were adding a mod n, he or she could take two messages and subtract them
in Zn, thus getting the difference of two unencrypted messages. (In Problem 11 we ask you to
explain why, even if your adversary didn’t know n, but just believed you were adding some secret
number a mod some other secret number n, she or he could use three encoded messages to find
three differences in the integers, instead of Zn, one of which was the difference of two messages.)
This difference could contain valuable information for your adversary.3 Thus adding a mod n is
not an encoding method you would want to use more than once.

Cryptography using multiplication mod n

We will now explore whether multiplication is a good method for encryption. In particular, we
could encrypt by multiplying a message (mod n) by a prechosen value a. We would then expect

3If each segement of a message were equally likely to be any number between 0 and n, and if any second (or
third, etc.) segment were equally likely to follow any first segement, then knowing the difference between two
segments would yield no information about the two segments. However, because language is structured and most
information is structured, these two conditions are highly unlikely to hold, in which case your adversary could
apply structural knowledge to deduce information about your two messages from their difference.
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to decrypt by “dividing” by a. What exactly does division mod a mean? Informally, we think of
division as the “inverse” of multiplication, that is, if we take a number x, multiply by a and then
divide by a, we should get back x. Clearly, with normal arithmetic, this is the case. However,
with modular arithmetic, division is trickier.

Exercise 2.1-6 One possibility for encryption is to take a message x and compute a ·n x,
for some value a, that the sender and receiver both know. You could then decrypt by
doing division by a in Zn if you knew how to divide in Zn. How well does this work?
In particular, consider the following three cases. First, consider n = 12 and a = 4
and x = 3. Second, consider n = 12 and a = 3 and x = 6. Third, consider n = 12
and a = 5 and x = 7.

When we encoded a message by adding a in Zn, we could decode the message simply by
subtracting a in Zn. However, this method had significant disadvantages, even if our adversary
did not know n. If instead of encoding by adding a mod n, we encoded by multiplying by a
mod n, we would foil the adversary’s ability to subtract each two of three messages from each
other to get a difference of two unencoded messages. (This doesn’t give us a great secret key
cryptosystem, even if both a and n are secret, but it does give us a better one.) By analogy, if we
encode by multiplying by a in Zn, we would expect to decode by dividing by a in Zn. However,
Exercise 2.1-6 shows that division in Zn doesn’t always make very much sense. Suppose your
value of n was 12 and the value of a was 4. You send the message 3 as 4 ·12 3 = 0. Thus you
send the encoded message 0. Now your partner sees 0, and says the message might have been 0;
after all, 4 ·12 0 = 0. On the other hand, 4 ·12 3 = 0, 4 ·12 6 = 0, and 4 ·12 9 = 0 as well. Thus your
partner has four different choices for the original message, which is almost as bad as having to
guess the original message itself!

It might appear that special problems arose because the encoded message was 0, so the next
question in Exercise 2.1-6 gives us an encoded message that is not 0. Suppose that a = 3 and
n = 12. Now we encode the message 6 by computing 3 ·12 6 = 6. Straightforward calculation
shows that 3 ·12 2 = 6, 3 ·12 6 = 6, and 3 ·12 10 = 6. Thus, the message 6 can be decoded in three
possible ways, as 2, 6, or 10.

The final question in Exercise 2.1-6 provides some hope. Let a = 5 and n = 12. The message
is 7 is encoded as 5 ·12 7 = 11. Simple checking of 5 ·12 1, 5 ·12 2, 5 ·12 3, and so on shows that 7 is
the unique solution in Z12 to the equation 5 ·12 x = 11. Thus in this case we can correctly decode
the message.

As we shall see in the next section, the kinds of problems we had in Exercise 2.1-6 happen
only when a and n have a common divisor that is greater than 1. Thus, when a and n have no
common factors greater than one, all our receiver needs to know is how to divide by a in Zn, and
she can decrypt our message. If you don’t now know how to divide by a in Zn, then you can
begin to understand the idea of public key cryptography. The message is there for anyone who
knows how to divide by a to find, but if nobody but our receiver can divide by a, we can tell
everyone what a and n are and our messages will still be secret. As we shall soon see, dividing
by a is not particularly difficult, so a better trick is needed for public key cryptography to work.

Important Concepts, Formulas, and Theorems

1. Cryptography is the study of methods to send and receive secret messages.



46 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

(a) The sender wants to send a message to a receiver.

(b) The adversary wants to steal the message.

(c) In private key cryptography, the sender and receiver agree in advance on a secret code,
and then send messages using that code.

(d) In public key cryptography, the encoding method can be published. Each person has
a public key used to encrypt messages and a secret key used to encrypt an encrypted
message.

(e) The original message is called the plaintext.

(f) The encoded text is called the ciphertext.

(g) A Caesar cipher is one in which each letter of the alphabet is shifted by a fixed amount.

2. Euclid’s Division Theorem. For every integer m and positive integer n, there exist unique
integers q and r such that m = nq + r and 0 ≤ r < n. By definition, r is equal to m mod n.

3. Adding multiples of n does not change values mod n. That is, i mod n = (i + kn) mod n
for any integer k.

4. Mods (by n) can be taken anywhere in calculation, so long as we take the final result mod
n.

(i + j) mod n = [i + (j mod n)] mod n

= [(i mod n) + j] mod n

= [(i mod n) + (j mod n)] mod n

(i · j) mod n = [i · (j mod n)] mod n

= [(i mod n) · j] mod n

= [(i mod n) · (j mod n)] mod n

5. Commutative, associative and distributive laws. Addition and multiplication mod n satisfy
the commutative and associative laws, and multiplication distributes over addition.

6. Zn. We use the notation Zn to represent the integers 0, 1, . . . , n − 1 together with a redef-
inition of addition, which we denote by +n, and a redefinition of multiplication, which we
denote ·n. The redefinitions are:

i +n j = (i + j) mod n

i ·n j = (i · j) mod n

We use the expression “x ∈ Zn” to mean that x is a variable that can take on any of the
integral values between 0 and n − 1, and that in algebraic expressions involving x we will
use +n and ·n. We use the expression a ∈ Zn to mean that a is a constant between 0 and
n − 1, and in algebraic expressions involving a we will use +n and ·n.
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Problems

1. What is 14 mod 9? What is −1 mod 9? What is −11 mod 9?

2. How many places has each letter been shifted in the Caesar cipher used to encode the
message XNQQD RJXXFLJ?

3. What is 16 +23 18? What is 16 ·23 18?

4. A short message has been encoded by converting it to an integer by replacing each “a” by
1, each “b” by 2, and so on, and concatenating the integers. The result had six or fewer
digits. An unknown number a was added to the message mod 913,647, giving 618,232.
Without the knowledge of a, what can you say about the message? With the knowledge of
a, what could you say about the message?

5. What would it mean to say there is an integer x equal to 1
4 mod 9? If it is meaningful to

say there is such an integer, what is it? Is there an integer equal to 1
3 mod 9? If so, what

is it?

6. By multiplying a number x times 487 in Z30031 we obtain 13008. If you know how to find
the number x, do so. If not, explain why the problem seems difficult to do by hand.

7. Write down the addition table for +7 addition. Why is the table symmetric? Why does
every number appear in every row?

8. It is straightforward to solve, for x, any equation of the form

x +n a = b

in Zn, and to see that the result will be a unique value of x. On the other hand, we saw
that 0, 3, 6, and 9 are all solutions to the equation

4 ·12 x = 0.

a) Are there any integral values of a and b, with 1 ≤ a, b < 12, for which the equation
a ·12 x = b does not have any solutions in Z12? If there are, give one set of values for
a and b. If there are not, explain how you know this.

b) Are there any integers a, with 1 < a < 12 such that for every integral value of b,
1 ≤ b < 12, the equation a ·12 x = b has a solution? If so, give one and explain why it
works. If not, explain how you know this.

9. Does every equation of the form a ·n x = b, with a, b ∈ Zn have a solution in Z5? in Z7? in
Z9? in Z11?

10. Recall that if a prime number divides a product of two integers, then it divides one of the
factors.

a) Use this to show that as b runs though the integers from 0 to p− 1, with p prime, the
products a ·p b are all different (for each fixed choice of a between 1 and p − 1).

b) Explain why every integer greater than 0 and less than p has a unique multiplicative
inverse in Zp, if p is prime.
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11. Explain why, if you were encoding messages x1, x2, and x3 to obtain y1, y2 and y3 by adding
a mod n, your adversary would know that at least one of the differences y1 − y2, y1 − y3 or
y2−y3 taken in the integers, not in Zn, would be the difference of two unencoded messages.
(Note: we are not saying that your adversary would know which of the three was such a
difference.)

12. Modular arithmetic is used in generating pseudo-random numbers. One basic algorithm
(still widely used) is linear congruential random number generation. The following piece of
code generates a sequence of numbers that may appear random to the unaware user.

(1) set seed to a random value
(2) x = seed
(3) Repeat
(4) x = (ax + b) mod n
(5) print x
(6) Until x = seed

Execute the loop by hand for a = 3, b = 7, n = 11 and seed = 0. How “random” are these
random numbers?

13. Write down the ·7 multiplication table for Z7.

14. Prove the equalities for multiplication in Lemma 2.3.

15. State and prove the associative law for ·n multiplication.

16. State and prove the distributive law for ·n multiplication over +n addition.

17. Write pseudocode to take m integers x1, x2, . . . , xm, and an integer n, and return Πm
i xi mod

n. Be careful about overflow; in this context, being careful about overflow means that at
no point should you ever compute a value that is greater than n2.

18. Write pseudocode to decode a message that has been encoded using the algorithm

• take three consecutive letters,

• reverse their order,

• interpret each as a base 26 integer (with A=0; B=1, etc.),

• multiply that number by 37,

• add 95 and then

• convert that number to base 8.

Continue this processing with each block of three consecutive letters. Append the blocks,
using either an 8 or a 9 to separate the blocks. Finally, reverse the number, and replace
each digit 5 by two 5’s.
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2.2 Inverses and GCDs

Solutions to Equations and Inverses mod n

In the last section we explored multiplication in Zn. We saw in the special case with n = 12 and
a = 4 that if we used multiplication by a in Zn to encrypt a message, then our receiver would
need to be able to solve, for x, the equation 4 ·n x = b in order to decode a received message b.
We saw that if the encrypted message was 0, then there were four possible values for x. More
generally, Exercise 2.2-6 and some of the problems in the last section show that for certain values
of n, a, and b, equations of the form a ·n x = b have a unique solution, while for other values of
n, a, and b, the equation could have no solutions, or more than one solution.

To decide whether an equation of the form a ·n x = b has a unique solution in Zn, it helps
know whether a has a multiplicative inverse in Zn, that is, whether there is another number a′

such that a′ ·n a = 1. For example, in Z9, the inverse of 2 is 5 because 2 ·9 5 = 1. On the other
hand, 3 does not have an inverse in Z9, because the equation 3 ·9 x = 1 does not have a solution.
(This can be verified by checking the 9 possible values for x.) If a does have an inverse a′, then
we can find a solution to the equation

a ·n x = b .

To do so, we multiply both sides of the equation by a′, obtaining

a′ ·n (a ·n x) = a′ ·n b.

By the associative law, this gives us

(a′ ·n a) ·n x = a′ ·n b.

But a′ ·n a = 1 by definition so we have that

x = a′ ·n b .

Since this computation is valid for any x that satisfies the equation, we conclude that the only x
that satisfies the equation is a′ ·n b. We summarize this discussion in the following lemma.

Lemma 2.5 Suppose a has a multiplicative inverse a′ in Zn. Then for any b ∈ Zn, the equation

a ·n x = b

has the unique solution
x = a′ ·n b .

Note that this lemma holds for any value of b ∈ Zn.

This lemma tells us that whether or not a number has an inverse mod n is important for the
solution of modular equations. We therefore wish to understand exactly when a member of Zn

has an inverse.
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Inverses mod n

We will consider some of the examples related to Problem 9 of the last section.

Exercise 2.2-1 Determine whether every element a of Zn has an inverse for n= 5, 6, 7, 8,
and 9.

Exercise 2.2-2 If an element of Zn has a multiplicative inverse, can it have two different
multiplicative inverses?

For Z5, we can determine by multiplying each pair of nonzero members of Z5 that the following
table gives multiplicative inverses for each element a of Z5. For example, the products 2 ·5 1 = 2,
2 ·5 2 = 4, 2 ·5 3 = 1, and 2 ·5 4 = 3 tell us that 3 is the unique multiplicative inverse for 2 in Z5.
This is the reason we put 3 below 2 in the table. One can make the same kinds of computations
with 3 or 4 instead of 2 on the left side of the products to get the rest of the table.

a 1 2 3 4
a′ 1 3 2 4

For Z7, we have similarly the table

a 1 2 3 4 5 6
a′ 1 4 5 2 3 6

.

For Z9, we have already said that 3 ·9 x = 1 does not have a solution, so by Lemma 2.5, 3
does not have an inverse. (Notice how we are using the Lemma. The Lemma says that if 3 had
an inverse, then the equation 3 ·9 x = 1 would have a solution, and this would contradict the fact
that 3 ·9 x = 1 does not have a solution. Thus assuming that 3 had an inverse would lead us to
a contradiction. Therefore 3 has no multiplicative inverse.)

This computation is a special case of the following corollary to Lemma 2.5.

Corollary 2.6 Suppose there is a b in Zn such that the equation

a ·n x = b

does not have a solution. Then a does not have a multiplicative inverse in Zn.

Proof: Suppose that a ·n x = b has no solution. Suppose further that a does have a multi-
plicative inverse a′ in Zn. Then by Lemma 2.5, x = a′b is a solution to the equation a ·n x = b.
This contradicts the hypothesis given in the corollary that the equation does not have a solution.
Thus some supposition we made above must be incorrect. One of the assumptions, namely that
a ·n x = b has no solution was the hypothesis given to us in the statement of the corollary. The
only other supposition we made was that a has an inverse a′ in Zn. Thus this supposition must
be incorrect as it led to the contradiction. Therefore, it must be case that a does not have a
multiplicative inverse in Zn.

Our proof of the corollary is a classical example of the use of contradiction in a proof. The
principle of proof by contradiction is the following.
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Principle 2.1 (Proof by contradiction) If by assuming a statement we want to prove is false,
we are lead to a contradiction, then the statement we are trying to prove must be true.

We can actually give more information than Exercise 1 asks for. You can check that the table
below shows an X for the elements of Z9 that do not have inverses and gives an inverse for each
element that has one

a 1 2 3 4 5 6 7 8
a′ 1 5 X 7 2 X 4 8

.

In Z6, 1 has an inverse, namely 1, but the equations

2 ·6 1 = 2, 2 ·6 2 = 4, 2 ·6 3 = 0, 2 ·6 4 = 2, 2 ·6 5 = 4

tell us that 2 does not have an inverse. Less directly, but with less work, we see that the equation
2 ·6 x = 3 has no solution because 2x will always be even, so 2x mod 6 will always be even. Then
Corollary 2.6 tells us that 2 has no inverse. Once again, we give a table that shows exactly which
elements of Z6 have inverses.

a 1 2 3 4 5
a′ 1 X X X 5

A similar set of equations shows that 2 does not have an inverse in Z8. The following table
shows which elements of Z8 have inverses.

a 1 2 3 4 5 6 7
a′ 1 X 3 X 5 X 7

.

We see that every nonzero element in Z5 and Z7 does have a multiplicative inverse, but in Z6,
Z8, and Z9, some elements do not have a multiplicative inverse. Notice that 5 and 7 are prime,
while 6, 8, and 9 are not. Further notice that the elements in Zn that do not have a multiplicative
inverse are exactly those that share a common factor with n.

We showed that 2 has exactly one inverse in Z5 by checking each multiple of 2 in Z5 and
showing that exactly one multiple of 2 equals 1. In fact, for any element that has an inverse
in Z5, Z6, Z7, Z8, and Z9, you can check in the same way that it has exactly one inverse. We
explain why in a theorem.

Theorem 2.7 If an element of Zn has a multiplicative inverse, then it has exactly one inverse.

Proof: Suppose that an element a of Zn has an inverse a′. Suppose that a∗ is also an inverse
of a. Then a′ is a solution to a ·n x = 1 and a∗ is a solution to a ·n x = 1. But by Lemma 2.5, the
equation a ·n x = 1 has a unique solution. Therefore a′ = a∗.

Just as we use a−1 to denote the inverse of a in the real numbers, we use a−1 to denote the
unique inverse of a in Zn when a has an inverse. Now we can say precisely what we mean by
division in Zn. We will define what we mean by dividing a member of Zn by a if and only if a has
an inverse a−1 mod n; in this case dividing b by a mod n is defined to be same as multiplying b by
a−1 mod n. We were led to our discussion of inverses because of their role in solving equations.
We observed that in our examples, an element of Zn that has an inverse mod n has no factors
greater than 1 in common with n. This is a statement about a and n as integers with ordinary
multiplication rather than multiplication mod n. Thus to prove that a has an inverse mod n if
and only if a and n have no common factors other than 1 and -1, we have to convert the equation
a ·n x = 1 into an equation involving ordinary multiplication.
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Converting Modular Equations to Normal Equations

We can re-express the equation
a ·n x = 1

as
ax mod n = 1.

But the definition of ax mod n is that it is the remainder r we get when we write ax = qn+r,
with 0 ≤ r < n. This means that ax mod n = 1 if and only if there is an integer q with
ax = qn + 1, or

ax − qn = 1. (2.8)

Thus we have shown

Lemma 2.8 The equation
a ·n x = 1

has a solution in Zn if and only if there exist integers x and y such that

ax + ny = 1.

Proof: We simply take y = −q.

We make the change from −q to y for two reasons. First, if you read a number theory book,
you are more likely to see the equation with y in this context. Second, to solve this equation,
we must find both x and y, and so using a letter near the end of the alphabet in place of −q
emphasizes that this is a variable for which we need to solve.

It appears that we have made our work harder, not easier, as we have converted the problem
of solving (in Zn) the equation a ·n x = 1, an equation with just one variable x (that could only
have n−1 different values), to a problem of solving Equation 2.8, which has two variables, x and
y. Further, in this second equation, x and y can take on any integer values, even negative values.

However, this equation will prove to be exactly what we need to prove that a has an inverse
mod n if and only if a and n have no common factors larger than one.

Greatest Common Divisors (GCD)

Exercise 2.2-3 Suppose that a and n are integers such that ax+ny = 1, for some integers
x and y. What does that tell us about being able to find a (multiplicative) inverse
for a (mod n)? In this situation, if a has an inverse in Zn, what is it?

Exercise 2.2-4 If ax+ny = 1 for integers x and y, can a and n have any common divisors
other than 1 and -1?

In Exercise 2.2-3, since by Lemma 2.8, the equation a ·n x = 1 has a solution in Zn if and
only if there exist integers x and y such that ax + ny = 1, we can can conclude that

Theorem 2.9 A number a has a multiplicative inverse in Zn if and only if there are integers x
and y such that ax + ny = 1.
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We answer the rest of Exercise 2.2-3 with a corollary.

Corollary 2.10 If a ∈ Zn and x and y are integers such that ax+ny = 1, then the multiplicative
inverse of a in Zn is x mod n.

Proof: Since n ·n y = 0 in Zn, we have a ·n x = 1 in Zn and therefore x is the inverse of a in
Zn.

Now let’s consider Exercise 2.2-4. If a and n have a common divisor k, then there must exist
integers s and q such that

a = sk

and
n = qk .

Substituting these into ax + ny = 1, we obtain

1 = ax + ny

= skx + qky

= k(sx + qy).

But then k is a divisor of 1. Since the only integer divisors of 1 are ±1, we must have k = ±1.
Therefore a and n can have no common divisors other than 1 and -1.

In general, the greatest common divisor of two numbers j and k is the largest number d
that is a factor of both j and k.4 We denote the greatest common divisor of j and k by gcd(j, k).

We can now restate Exercise 2.2-4 as follows:

Lemma 2.11 Given a and n, if there exist integers x and y such that ax + ny = 1 then
gcd(a, n) = 1.

If we combine Theorem 2.9 and Lemma 2.11, we see that that if a has a multiplicative inverse
mod n, then gcd(a, n) = 1. It is natural to ask whether the statement that “if gcd a, n = 1, then
a has a multiplicative inverse” is true as well.5 If so, this would give us a way to test whether a
has a multiplicative inverse mod n by computing the greatest common divisor of a and n. For
this purpose we would need an algorithm to find gcd(a, n). It turns out that there is such an
algorithm, and a byproduct of the algorithm is a proof of our conjectured converse statement!
When two integers j and k have gcd(j, k) = 1, we say that j and k are relatively prime.

Euclid’s Division Theorem

One of the important tools in understanding greatest common divisors is Euclid’s Division The-
orem, a result which has already been important to us in defining what we mean by m mod n.
While it appears obvious, as do many theorems in number theory, it follows from simpler prin-
ciples of number theory, and the proof helps us understand how the greatest common divisor

4There is one common factor of j and k for sure, namely 1. No common factor can be larger than the smaller
of j and k in absolute value, and so there must be a largest common factor.

5Notice that this statement is not equivalent to the statement in the lemma. This statement is what is called
the “converse” of the lemma; we will explain the idea of converse statements more in Chapter 3.
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algorithm works. Thus we restate it and present a proof here. Our proof uses the method of
proof by contradiction, which you first saw in Corollary 2.6. Notice that we are assuming m
is nonnegative which we didn’t assume in our earlier statement of Euclid’s Division Theorem,
Theorem 2.1. In Problem 16 we will explore how we can remove this additional assumption.

Theorem 2.12 (Euclid’s Division Theorem, restricted version) For every nonnegative in-
teger m and positive integer n, there exist unique integers q and r such that m = nq + r and
0 ≤ r < n. By definition, r is equal to m mod n.

Proof: To prove this theorem, assume instead, for purposes of contradiction, that it is false.
Among all pairs (m, n) that make it false, choose the smallest m that makes it false. We cannot
have m < n because then the statement would be true with q = 0 and r = m, and we cannot
have m = n because then the statement is true with q = 1 and r = 0. This means m − n is
a positive number smaller than m. We assumed that m was the smallest value that made the
lemma false, and so the theorem must be true for the pair (m−n, n). Therefore, there must exist
a q′ and r′ such that

m − n = q′n + r′, with 0 ≤ r′ < n.

Thus m = (q′ + 1)n + r′, and by setting q = q′ + 1 and r = r′, we can satisfy the theorem for the
pair (m, n), contradicting the assumption that the statement is false. Thus the only possibility
is that the statement is true.

We call the proof technique used here proof by smallest counterexample. In this method, we
assume, as in all proofs by contradiction, that the theorem is false. This implies that there must
be a counterexample which does not satisfy the conditions of the theorem. In this case that
counterexample consists of numbers m and n such that no integers q and r exist which satisfy
m = qn + r. Further, if there are counterexamples, then there must be one that is smallest in
some sense. (Here being smallest means having the smallest m.) We choose such a smallest
one, and then reason that if it exists, then every smaller example is true. If we can then use a
smaller true example to show that our supposedly false example is true as well, we have created
a contradiction. The only thing this can contradict is our assumption that the theorem was false.
Therefore this assumption has to be invalid, and the theorem has to be true. As we will see in
Chapter ??, this method is closely related to a proof method called proof by induction and to
recursive algorithms. In essence, the proof of Theorem 2.1 describes a recursive program to find
q and r in the theorem above so that 0 ≤ r < n.

Exercise 2.2-5 Suppose that k = jq + r as in Euclid’s Division Theorem. Is there a
relationship between gcd(j, k) and gcd(r, j)?

In this exercise, if r = 0, then gcd(r, j) is j, because any number is a divisor of zero. But this
is the GCD of k and j as well since in this case k = jq. The answer to the remainder of Exercise
2.2-5 appears in the following lemma.

Lemma 2.13 If j, k, q, and r are positive integers such that k = jq + r then

gcd(j, k) = gcd(r, j). (2.9)
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Proof: In order to prove that both sides of Equation 2.9 are equal, we will show that they have
exactly the same set of factors. That is, we will first show that if d is a factor of the left-hand
side, then it is a factor of the right-hand side. Second, we will show that if d is a factor of the
right-hand side, then it is a factor of the left-hand side.

If d is a factor of gcd(j, k) then it is a factor of both j and k. There must be integers i1 and
i2 so that k = i1d and j = i2d. Thus d is also a factor of

r = k − jq

= i1d − i2dq

= (i1 − i2q)d .

Since d is a factor of j (by supposition) and r (by the equation above), it must be a factor of
gcd(r, j).

Similarly, if d is a factor of gcd(r, j), it is a factor of j and r, and we can write j = i3d and
r = i4d. Therefore,

k = jq + r

= i3dq + i4d

= (i3q + i4)d ,

and d is a factor of k and therefore of gcd(j, k).

Since gcd(j, k) has the same factors as gcd(r, j) they must be equal.

While we did not need to assume r < j in order to prove the lemma, Theorem 2.1 tells us
we may assume r < j. The assumption in the lemma that j, q and r are positive implies that
j < k. Thus this lemma reduces our problem of finding gcd(j, k) to the simpler (in a recursive
sense) problem of finding gcd(r, j).

The GCD Algorithm

Exercise 2.2-6 Using Lemma 2.13, write a recursive algorithm to find gcd(j, k), given that
j ≤ k. Use it (by hand) to find the GCD of 24 and 14 and the GCD of 252 and 189.

Our algorithm for Exercise 2.2-6 is based on Lemma 2.13 and the observation that if k = jq,
for any q, then j = gcd(j, k). We first write k = jq + r in the usual way. If r = 0, then we
return j as the greatest common divisor. Otherwise, we apply our algorithm to find the greatest
common divisor of j and r. Finally, we return the result as the greatest common divisor of j
and k.

To find
gcd(14, 24)

we write
24 = 14(1) + 10.

In this case k = 24, j = 14, q = 1 and r = 10. Thus we can apply Lemma 2.13 and conclude that

gcd(14, 24) = gcd(10, 14).
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We therefore continue our computation of gcd(10, 14), by writing 14 = 10 · 1 + 4, and have that

gcd(10, 14) = gcd(4, 10).

Now,
10 = 4 · 2 + 2,

and so
gcd(4, 10) = gcd(2, 4).

Now
4 = 2 · 2 + 0,

so that now k = 4, j = 2, q = 2, and r = 0. In this case our algorithm tells us that our current
value of j is the GCD of the original j and k. This step is the base case of our recursive algorithm.
Thus we have that

gcd(14, 24) = gcd(2, 4) = 2.

While the numbers are larger, it turns out to be even easier to find the GCD of 252 and 189.
We write

252 = 189 · 1 + 63,

so that gcd(189, 252) = gcd(63, 189), and

189 = 63 · 3 + 0.

This tells us that gcd(189, 252) = gcd(189, 63) = 63.

Extended GCD algorithm

By analyzing our process in a bit more detail, we will be able to return not only the greatest
common divisor, but also numbers x and y such that gcd(j, k) = jx + ky. This will solve the
problem we have been working on, because it will prove that if gcd(a, n) = 1, then there are
integers x and y such that ax + ny = 1. Further it will tell us how to find x, and therefore the
multiplicative inverse of a.

In the case that k = jq and we want to return j as our greatest common divisor, we also want
to return 1 for the value of x and 0 for the value of y. Suppose we are now in the case that that
k = jq + r with 0 < r < j (that is, the case that k �= jq). Then we recursively compute gcd(r, j)
and in the process get an x′ and a y′ such that gcd(r, j) = rx′ + jy′. Since r = k − jq, we get by
substitution that

gcd(r, j) = (k − jq)x′ + jy′ = kx′ + j(y′ − qx′).

Thus when we return gcd(r, j) as gcd(j, k), we want to return the value of x′ as y and and the
value of y′ − qx′ as x.

We will refer to the process we just described as “Euclid’s extended GCD algorithm.”

Exercise 2.2-7 Apply Euclid’s extended GCD algorithm to find numbers x and y such
that the GCD of 14 and 24 is 14x + 24y.
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For our discussion of Exercise 2.2-7 we give pseudocode for the extended GCD algorithm.
While we expressed the algorithm more concisely earlier by using recursion, we will give an
iterative version that is longer but can make the computational process clearer. Instead of using
the variables q, j, k, r, x and y, we will use six arrays, where q[i] is the value of q computed on the
ith iteration, and so forth. We will use the index zero for the input values, that is j[0] and k[0]
will be the numbers whose gcd we wish to compute. Eventually x[0] and y[0] will become the x
and y we want.

(In Line 0 we are using the notation 
x� to stand for the floor of x, the largest integer less
than or equal to x.)

gcd(j, k)
// assume that j < k
(1) i = 0; k[i] = k; j[i] = j
(2) Repeat
(3) q[i] = 
k[i]/j[i]�
(4) r[i] = k[i] − q[i]j[i]
(5) k[i + 1] = j[i]; j[i + 1] = r[i]
(6) i = i + 1
(7) Until (r[i − 1] = 0)
// we have found the value of the gcd, now we compute the x and y
(8) i = i − 1
(9) gcd = j[i]
(10) y[i] = 0;x[i] = 1
(11) i = i − 1
(12) While (i ≥ 0)
(13) y[i] = x[i + 1]
(14) x[i] = y[i + 1] − q[i]x[i + 1]
(15) i = i − 1
(16) Return gcd
(17) Return x
(18) Return y

We show the details of how this algorithm applies to gcd(24, 14) in Table 2.1. In a row, the
q[i] and r[i] values are computed from the j[i] and k[i] values. Then the j[i] and r[i] are passed
down to the next row as k[i + 1] and j[i + 1] respectively. This process continues until we finally
reach a case where k[i] = q[i]j[i] and we can answer j[i] for the gcd. We can then begin computing
x[i] and y[i]. In the row with i = 3, we have that x[i] = 0 and y[i] = 1. Then, as i decreases, we
compute x[i] and y[i] for a row by setting y[i] to x[i + 1] and x[i] to y[i + 1] − q[i]x[i + 1]. We
note that in every row, we have the property that j[i]x[i] + k[i]y[i] = gcd(j, k).

We summarize Euclid’s extended GCD algorithm in the following theorem:

Theorem 2.14 Given two integers j and k, Euclid’s extended GCD algorithm computes gcd(j, k)
and two integers x and y such that gcd(j, k) = jx + ky .

We now use Eculid’s extended GCD algorithm to extend Lemma 2.11.
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i j[i] k[i] q[i] r[i] x[i] y[i]
0 14 24 1 10
1 10 14 1 4
2 4 10 2 2
3 2 4 2 0 1 0
2 4 10 2 2 −2 1
1 10 14 1 4 3 −2
0 14 24 1 10 −5 3
gcd = 2
x = −5
y = 3

Table 2.1: The computation of gcd(14, 24) by algorithm gcd(j, k).

Theorem 2.15 Two positive integers j and k have greatest common divisor 1 (and thus are
relatively prime) if and only if there are integers x and y such that jx + ky=1.

Proof: The statement that if there are integers x and y such that jx+ky = 1, then gcd(j, k) =
1 is proved in Lemma 2.11. In other words, gcd(j, k) = 1 if there are integers x and y such that
jx + ky = 1.

On the other hand, we just showed, by Euclid’s extended GCD algorithm, that given positive
integers j and k, there are integers x and y such that gcd(j, k) = jx+ky. Therefore, gcd(j, k) = 1
only if there are integers x and y such that jx + ky = 1.

Combining Lemma 2.8 and Theorem 2.15, we obtain:

Corollary 2.16 For any positive integer n, an element a of Zn has a multiplicative inverse if
and only if gcd(a, n) = 1.

Using the fact that if n is prime, gcd(a, n) = 1 for all non-zero a ∈ Zn, we obtain

Corollary 2.17 For any prime p, every non-zero element a of Zp has an inverse.

Computing Inverses

Not only does Euclid’s extended GCD algorithm tell us if an inverse exists, but, just as we saw
in Exercise 2.2-3 it computes it for us. Combining Exercise 2.2-3 with Theorem 2.15, we get

Corollary 2.18 If an element a of Zn has an inverse, we can compute it by running Euclid’s
extended GCD algorithm to determine integers x and y so that ax + ny = 1; then the inverse of
a is x mod n.

For completeness, we now give pseudocode which determines whether an element a in Zn has an
inverse and computes the inverse if it exists:
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inverse(a, n)
(1) Run procedure gcd(a, n) to obtain gcd(a, n), x and y
(2) if gcd(a, n) = 1
(3) return x
(4) else
(5) print ‘‘no inverse exists’’

The correctness of the algorithm follows immediately from the fact that gcd(a, n) = ax + ny,
so if gcd(a, n) = 1, ax mod n must be equal to 1.

Important Concepts, Formulas, and Theorems

1. Multiplicative inverse. a′ is a multiplicative inverse of a in Zn if a ·n a′ = 1. If a has a
multiplicative inverse, then it has a unique multiplicative inverse which we denote by a−1.

2. An important way to solve modular equations. Suppose a has a multiplicative inverse mod
n, and this inverse is a−1. Then for any b ∈ Zn, the unique solution to the equation

a ·n x = b

is
x = a−1 ·n b .

3. Converting modular to regular equations. The equation

a ·n x = 1

has a solution in Zn if and only if there exist integers x and y such that

ax + ny = 1 .

4. When do inverses exist in Zn? A number a has a multiplicative inverse in Zn if and only
if there are integers x and y such that ax + ny = 1.

5. Greatest common divisor (GCD). The greatest common divisor of two numbers j and k is
the largest number d that is a factor of both j and k.

6. Relatively prime. When two numbers, j and k have gcd(j, k) = 1, we say that j and k are
relatively prime.

7. Connecting inverses to GCD. Given a and n, if there exist integers x and y such that
ax + ny = 1 then gcd(a, n) = 1.

8. GCD recursion lemma. If j, k, q, and r are positive integers such that k = jq + r then
gcd(j, k) = gcd(r, j).

9. Euclid’s GCD algorithm. Given two numbers j and k, this algorithm returns gcd(j, k).

10. Euclid’s extended GCD algorithm. Given two numbers j and k, this algorithm returns
gcd(j, k), and two integers x and y such that gcd(j, k) = jx + ky.
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11. Relating GCD of 1 to Euclid’s extended GCD algorithm. Two positive integers j and k have
greatest common divisor 1 if and only if there are integers x and y such that jx + ky=1.
One of the integers x and y could be negative.

12. Restatement for Zn. gcd(a, n) = 1 if and only if there are integers x and y such that
ax + ny = 1.

13. Condition for multiplicative inverse in Zn For any positive integer n, an element a of Zn

has an inverse if and only if gcd(a, n) = 1.

14. Multiplicative inverses in Zp, p prime For any prime p, every non-zero element a of Zp has
a multiplicative inverse.

15. A way to solve some modular equations a ·n x = b. Use Euclid’s extended GCD algorithm
to compute a−1 (if it exists), and multiply both sides of the equation by a−1. (If a has no
inverse, the equation might or might not have a solution.)

Problems

1. If a · 133−m · 277 = 1, does this guarantee that a has an inverse mod m? If so, what is it?
If not, why not?

2. If a · 133 − 2m · 277 = 1, does this guarantee that a has an inverse mod m? If so, what is
it? If not, why not?

3. Determine whether every nonzero element of Zn has a multiplicative inverse for n = 10 and
n = 11.

4. How many elements a are there such that a ·31 22 = 1? How many elements a are there
such that a ·10 2 = 1?

5. Given an element b in Zn, what can you say in general about the possible number of
elements a such that a ·n b = 1 in Zn?

6. If a · 133−m · 277 = 1, what can you say about all possible common divisors of a and m?

7. Compute the GCD of 210 and 126 by using Euclid’s GCD algorithm.

8. If k = jq + r as in Euclid’s Division Theorem, is there a relationship between gcd(q, k) and
gcd(r, q). If so, what is it?

9. Bob and Alice want to choose a key they can use for cryptography, but all they have to
communicate is a bugged phone line. Bob proposes that they each choose a secret number,
a for Alice and b for Bob. They also choose, over the phone, a prime number p with more
digits than any key they want to use, and one more number q. Bob will send Alice bq mod
p, and Alice will send Bob aq mod p. Their key (which they will keep secret) will then be
abq mod p. (Here we don’t worry about the details of how they use their key, only with
how they choose it.) As Bob explains, their wire tapper will know p, q, aq mod p, and bq
mod p, but will not know a or b, so their key should be safe.

Is this scheme safe, that is can the wiretapper compute abq mod p? If so, how does she do
it?
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Alice says “You know, the scheme sounds good, but wouldn’t it be more complicated for
the wire tapper if I send you qa mod p, you send me qb (mod p) and we use qab mod p as
our key?” In this case can you think of a way for the wire tapper to compute qab mod p?
If so, how can you do it? If not, what is the stumbling block? (It is fine for the stumbling
block to be that you don’t know how to compute something, you don’t need to prove that
you can’t compute it.)

10. Write pseudocode for a recursive version of the extended GCD algorithm.

11. Run Euclid’s extended GCD algorithm to compute gcd(576, 486). Show all the steps.

12. Use Euclid’s extended GCD algorithm to compute the multiplicative inverse of 16 modulo
103.

13. Solve the equation 16 ·103 x = 21 in Z103.

14. Which elements of Z35 do not have multiplicative inverses in Z35?

15. If k = jq + r as in Euclid’s Division Theorem, is there a relationship between gcd(j, k) and
gcd(r, k). If so, what is it?

16. Notice that if m is negative, then −m is positive, so that by Theorem 2.12 −m = qn + r,
where 0 ≤ r < n. This gives us m = −qn− r. If r = 0, then we have written m = q′n + r′,
where 0 ≤ r′ ≤ n and q′ = −q. However if r > 0, we cannot take r′ = −r and have
0 ≤ r′ < n. Notice, though, that since since we have already finished the case r = 0 we may
assume that 0 ≤ n − r < n. This suggests that if we were to take r′ to be n − r, we might
be able to find a q′ so that m = q′n + r′ with 0 ≤ r′ ≤ n, which would let us conclude that
Euclid’s Division Theorem is valid for negative values m as well as nonnegative values m.
Find a q′ that works and explain how you have extended Euclid’s Division Theorem from
the version in Theorem 2.12 to the version in Theorem 2.1.

17. The Fibonacci numbers Fi are defined as follows:

Fi =

{
1 if i is 1 or 2
Fi−1 + Fi−2 otherwise.

What happens when you run Euclid’s extended GCD algorithm on Fi and Fi−1? (We are
asking about the execution of the algorithm, not just the answer.)

18. Write (and run on several different inputs) a program to implement Euclid’s extended GCD
algorithm. Be sure to return x and y in addition to the GCD. About how many times does
your program have to make a recursive call to itself? What does that say about how long we
should expect it to run as we increase the size of the j and k whose GCD we are computing?

19. The least common multiple of two positive integers x and y is the smallest positive integer
z such that z is an integer multiple of both x and y. Give a formula for the least common
multiple that involves the GCD.

20. Write pseudocode that given integers a, b and n in Zn, either computes an x such that
a ·n x = b or concludes that no such x exists.

21. Give an example of an equation of the form a ·n x = b that has a solution even though a
and n are not relatively prime, or show that no such equation exists.
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22. Either find an equation of the form a ·n x = b in Zn that has a unique solution even though
a and n are not relatively prime, or prove that no such equation exists. In other words,
you are either to prove the statement that if a ·n x = b has a unique solution in Zn, then a
and n are relatively prime or to find a counter example.
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2.3 The RSA Cryptosystem

Exponentiation mod n

In the previous sections, we have considered encryption using modular addition and multiplica-
tion, and have seen the shortcomings of both. In this section, we will consider using exponentia-
tion for encryption, and will show that it provides a much greater level of security.

The idea behind RSA encryption is exponentiation in Zn. By Lemma 2.3, if a ∈ Zn,

aj mod n = a ·n a ·n · · · ·n a︸ ︷︷ ︸
j factors

. (2.10)

In other words aj mod n is the product in Zn of j factors, each equal to a.

The Rules of Exponents

Lemma 2.3 and the rules of exponents for the integers tell us that

Lemma 2.19 For any a ∈ Zn, and any nonnegative integers i and j,

(ai mod n) ·n (aj mod n) = ai+j mod n (2.11)

and
(ai mod n)j mod n = aij mod n. (2.12)

Exercise 2.3-1 Compute the powers of 2 mod 7. What do you observe? Now compute
the powers of 3 mod 7. What do you observe?

Exercise 2.3-2 Compute the sixth powers of the nonzero elements of Z7. What do you
observe?

Exercise 2.3-3 Compute the numbers 1 ·7 2, 2 ·7 2, 3 ·7 2, 4 ·7 2, 5 ·7 2, and 6 ·7 2. What
do you observe? Now compute the numbers 1 ·7 3, 2 ·7 3, 3 ·7 3, 4 ·7 3, 5 ·7 3, and
6 ·7 3. What do you observe?

Exercise 2.3-4 Suppose we choose an arbitrary nonzero number a between 1 and 6. Are
the numbers 1 ·7 a, 2 ·7 a, 3 ·7 a, 4 ·7 a, 5 ·7 a, and 6 ·7 a all different? Why or why
not?

In Exercise 2.3-1, we have that

20 mod 7 = 1
21 mod 7 = 2
22 mod 7 = 4
23 mod 7 = 1
24 mod 7 = 2
25 mod 7 = 4
26 mod 7 = 1
27 mod 7 = 2
28 mod 7 = 4.
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Continuing, we see that the powers of 2 will cycle through the list of three values 1, 2, 4 again
and again. Performing the same computation for 3, we have

30 mod 7 = 1
31 mod 7 = 3
32 mod 7 = 2
33 mod 7 = 6
34 mod 7 = 4
35 mod 7 = 5
36 mod 7 = 1
37 mod 7 = 3
38 mod 7 = 2.

In this case, we will cycle through the list of six values 1, 3, 2, 6, 4, 5 again and again.

Now observe that in Z7, 26 = 1 and 36 = 1. This suggests an answer to Exercise 2.3-2. Is it
the case that a6 mod 7 = 1 for all a ∈ Z7? We can compute that 16 mod 7 = 1, and

46 mod 7 = (2 ·7 2)6 mod 7
= (26 ·7 26) mod 7
= (1 ·7 1) mod 7
= 1.

What about 56? Notice that 35 = 5 in Z7 by the computations we made above. Using Equation
2.12 twice, this gives us

56 mod 7 = (35)6 mod 7
= 35·6 mod 7
= 36·5 mod 7
= (36)5 = 15 = 1

in Z7. Finally, since −1 mod 7 = 6, Lemma 2.3 tells us that 66 mod 7 = (−1)6 mod 7 = 1. Thus
the sixth power of each element of Z7 is 1.

In Exercise 2.3-3 we see that

1 ·7 2 = 1 · 2 mod 7 = 2
2 ·7 2 = 2 · 2 mod 7 = 4
3 ·7 2 = 3 · 2 mod 7 = 6
4 ·7 2 = 4 · 2 mod 7 = 1
5 ·7 2 = 5 · 2 mod 7 = 3
6 ·7 2 = 6 · 2 mod 7 = 5.

Thus these numbers are a permutation of the set {1, 2, 3, 4, 5, 6}. Similarly,

1 ·7 3 = 1 · 3 mod 7 = 3
2 ·7 3 = 2 · 3 mod 7 = 6
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3 ·7 3 = 3 · 3 mod 7 = 2
4 ·7 3 = 4 · 3 mod 7 = 5
5 ·7 3 = 5 · 3 mod 7 = 1
6 ·7 3 = 6 · 3 mod 7 = 4.

Again we get a permutation of {1, 2, 3, 4, 5, 6}.
In Exercise 2.3-4 we are asked whether this is always the case. Notice that since 7 is a prime,

by Corollary 2.17, each nonzero number between 1 and 6 has a mod 7 multiplicative inverse a−1.
Thus if i and j were integers in Z7 with i ·7 a = j ·7 a, we multiply mod 7 on the right by a−1 to
get

(i ·7 a) ·7 a−1 = (j ·7 a) ·7 a−1.

After using the associative law we get

i ·7 (a ·7 a−1) = j ·7 (a ·7 a−1). (2.13)

Since a ·7 a−1 = 1, Equation 2.13 simply becomes i = j. Thus, we have shown that the only way
for i ·7 a to equal j ·7 a is for i to equal j. Therefore, all the values i ·7 a for i = 1, 2, 3, 4, 5, 6 must
be different. Since we have six different values, all between 1 and 6, we have that the values ia
for i = 1, 2, 3, 4, 5, 6 are a permutation of {1, 2, 3, 4, 5, 6}.

As you can see, the only fact we used in our analysis of Exercise 2.3-4 is that if p is a prime,
then any number between 1 and p−1 has a multiplicative inverse in Zp. In other words, we have
really proved the following lemma.

Lemma 2.20 Let p be a prime number. For any fixed nonzero number a in Zp, the numbers
(1 · a) mod p, (2 · a) mod p, . . . , ((p− 1) · a) mod p, are a permutation of the set {1, 2, · · · , p− 1}.

With this lemma in hand, we can prove a famous theorem that explains the phenomenon we
saw in Exercise 2.3-2.

Fermat’s Little Theorem

Theorem 2.21 (Fermat’s Little Theorem). Let p be a prime number. Then ap−1 mod p = 1 in
Zp for each nonzero a in Zp.

Proof: Since p is a prime, Lemma 2.20 tells us that the numbers 1 ·p a, 2 ·p a, . . . , (p− 1) ·p a,
are a permutation of the set {1, 2, · · · , p − 1}. But then

1 ·p 2 ·p · · · ·p (p − 1) = (1 ·p a) ·p (2 ·p a) ·p · · · ·p ((p − 1) ·p a).

Using the commutative and associative laws for multiplication in Zp and Equation 2.10, we get

1 ·p 2 ·p · · · ·p (p − 1) = 1 ·p 2 ·p · · · ·p (p − 1) ·p (ap−1 mod p).

Now we multiply both sides of the equation by the multiplicative inverses in Zp of 2, 3, . . . , p− 1
and the left hand side of our equation becomes 1 and the right hand side becomes ap−1 mod p.
But this is exactly the conclusion of our theorem.
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Corollary 2.22 (Fermat’s Little Theorem, version 2) For every positive integer a, and prime p,
if a is not a multiple of p,

ap−1 mod p = 1.

Proof: This is a direct application of Lemma 2.3, because if we replace a by a mod p, then
Theorem 2.21 applies.

The RSA Cryptosystem

Fermat’s Little Theorem is at the heart of the RSA cryptosystem, a system that allows Bob to
tell the world a way that they can encode a message to send to him so that he and only he can
read it. In other words, even though he tells everyone how to encode the message, nobody except
Bob has a significant chance of figuring out what the message is from looking at the encoded
message. What Bob is giving out is called a “one-way function.” This is a function f that has
an inverse f−1, but even though y = f(x) is reasonably easy to compute, nobody but Bob (who
has some extra information that he keeps secret) can compute f−1(y). Thus when Alice wants to
send a message x to Bob, she computes f(x) and sends it to Bob, who uses his secret information
to compute f−1(f(x)) = x.

In the RSA cryptosystem Bob chooses two prime numbers p and q (which in practice each
have at least a hundred digits) and computes the number n = pq. He also chooses a number e �= 1
which need not have a large number of digits but is relatively prime to (p − 1)(q − 1), so that it
has an inverse d in Z(p−1)(q−1), and he computes d = e−1 mod (p − 1)(q − 1). Bob publishes e
and n. The number e is called his public key. The number d is called his private key.

To summarize what we just said, here is a pseudocode outline of what Bob does:

Bob’s RSA key choice algorithm
(1) Choose 2 large prime numbers p and q
(2) n = pq
(3) Choose e �= 1 so that e is relatively prime to (p − 1)(q − 1)
(4) Compute d = e−1 mod (p − 1)(q − 1).
(5) Publish e and n.
(6) Keep d secret.

People who want to send a message x to Bob compute y = xe mod n and send that to him
instead. (We assume x has fewer digits than n so that it is in Zn. If not, the sender has to
break the message into blocks of size less than the number of digits of n and send each block
individually.)

To decode the message, Bob will compute z = yd mod n.

We summarize this process in pseudocode below:

Alice-send-message-to-Bob(x)
Alice does:
(1) Read the public directory for Bob’s keys e and n.
(2) Compute y = xe mod n
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(3) Send y to Bob
Bob does:
(4) Receive y from Alice
(5) Compute z = yd mod n, using secret key d
(6) Read z

Each step in these algorithms can be computed using methods from this Chapter. In Section
2.4, we will deal with computational issues in more detail.

In order to show that the RSA cryptosystem works, that is, that it allows us to encode
and then correctly decode messages, we must show that z = x. In other words, we must show
that, when Bob decodes, he gets back the original message. In order to show that the RSA
cryptosystem is secure, we must argue that an eavesdropper, who knows n, e, and y, but does
not know p, q or d, can not easily compute x.

Exercise 2.3-5 To show that the RSA cryptosystem works, we will first show a simpler
fact. Why is

yd mod p = x mod p?

Does this tell us what x is?

Plugging in the value of y, we have

yd mod p = xed mod p. (2.14)

But, in Line 4 we chose e and d so that e ·m d = 1, where m = (p − 1)(q − 1). In other words,

ed mod (p − 1)(q − 1) = 1.

Therefore, for some integer k,
ed = k(p − 1)(q − 1) + 1 .

Plugging this into Equation (2.14), we obtain

xed mod p = xk(p−1)(q−1)+1 mod p

= x(k(q−1))(p−1)x mod p. (2.15)

But for any number a which is not a multiple of p, ap−1 mod p = 1 by Fermat’s Little Theorem
(Theorem 2.22). We could simplify equation 2.15 by applying Fermat’s Little Theorem to xk(q−1),
as you will see below. However we can only do this when xk(q−1) is not a multiple of p. This
gives us two cases, the case in which xk(q−1) is not a multiple of p (we’ll call this case 1) and the
case in which xk(q−1) is a multiple of p (we’ll call this case 2). In case 1, we apply Equation 2.12
and Fermat’s Little Theorem with a equal to xk(q−1), and we have that

x(k(q−1))(p−1) mod p =
(
xk(q−1)

)(p−1)
mod p (2.16)

= 1.

Combining equations 2.14, 2.15 and 2.17, we have that

yd mod p = xk(q−1)(p−1)x mod p = 1 · x mod p = x mod p,
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and hence yd mod p = x mod p.

We still have to deal with case 2, the case in which xk(q−1) is a multiple of p. In this case
x is a multiple of p as well since x is an integer and p is prime. Thus x mod p = 0. Combining
Equations 2.14 and 2.15 with Lemma 2.3, we get

yd mod p = (xk(q−1)(p−1) mod p)(x mod p) = 0 = x mod p.

Hence in this case as well, we have yd mod p = x mod p.

While this will turn out to be useful information, it does not tell us what x is, however,
because x may or may not equal x mod p.

The same reasoning shows us that yd mod q = x mod q. What remains is to show what these
two facts tell us about yd mod pq = y mod n, which is what Bob computes.

Notice that by Lemma 2.3 we have proved that

(yd − x) mod p = 0 (2.17)

and
(yd − x) mod q = 0. (2.18)

Exercise 2.3-6 Write down an equation using only integers and addition, subtraction and
multiplication in the integers, but perhaps more letters, that is equivalent to Equation
2.17, which says that (yd − x) mod p = 0. (Do not use mods.)

Exercise 2.3-7 Write down an equation using only integers and addition, subtraction and
multiplication in the integers, but perhaps more letters, that is equivalent to Equation
2.18, which says that (yd − x) mod q = 0. (Do not use mods.)

Exercise 2.3-8 If a number is a multiple of a prime p and a different prime q, then what
else is it a multiple of? What does this tell us about yd and x?

The statement that yd−x mod p = 0 is equivalent to saying that yd−x = ip for some integer
i. The statement that yd − x mod q = 0 is equivalent to saying yd − x = jq for some integer
j. If something is a multiple of the prime p and the prime q, then it is a multiple of pq. Thus
(yd−x) mod pq = 0. Lemma 2.3 tells us that (yd−x) mod pq = (yd mod pq−x) mod pq = 0. But
x and yd mod pq are both integers between 0 and pq − 1, so their difference is between −(pq − 1)
and pq − 1. The only integer between these two values that is 0 mod pq is zero itself. Thus
(yd mod pq) − x = 0. In other words,

x = yd mod pq

= yd mod n ,

which means that Bob will in fact get the correct answer.

Theorem 2.23 (Rivest, Shamir, and Adleman) The RSA procedure for encoding and decoding
messages works correctly.

Proof: Proved above.

One might ask, given that Bob published e and n, and messages are encrypted by computing
xe mod n, why can’t any adversary who learns xe mod n just compute eth roots mod n and
break the code? At present, nobody knows a quick scheme for computing eth roots mod n, for
an arbitrary n. Someone who does not know p and q cannot duplicate Bob’s work and discover
x. Thus, as far as we know, modular exponentiation is an example of a one-way function.
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The Chinese Remainder Theorem

The method we used to do the last step of the proof of Theorem 2.23 also proves a theorem
known as the “Chinese Remainder Theorem.”

Exercise 2.3-9 For each number in x ∈ Z15, write down x mod 3 and x mod 5. Is x
uniquely determined by these values? Can you explain why?

x x mod 3 x mod 5
0 0 0
1 1 1
2 2 2
3 0 3
4 1 4
5 2 0
6 0 1
7 1 2
8 2 3
9 0 4
10 1 0
11 2 1
12 0 2
13 1 3
14 2 4

Table 2.2: The values of x mod 3 and x mod 5 for each x between zero and 14.

As we see from Table 2.2, each of the 3 · 5 = 15 pairs (i, j) of integers i, j with 0 ≤ i ≤ 2 and
0 ≤ j ≤ 4 occurs exactly once as x ranges through the fifteen integers from 0 to 14. Thus the
function f given by f(x) = (x mod 3, x mod 5) is a one-to-one function from a fifteen element
set to a fifteen element set, so each x is uniquely determined by its pair of remainders.

The Chinese Remainder Theorem tells us that this observation always holds.

Theorem 2.24 (Chinese Remainder Theorem) If m and n are relatively prime integers and
a ∈ Zm and b ∈ Zn, then the equations

x mod m = a (2.19)
x mod n = b (2.20)

have one and only one solution for an integer x between 0 and mn − 1.

Proof: If we show that as x ranges over the integers from 0 to mn − 1, then the ordered
pairs (x mod m, x mod n) are all different, then we will have shown that the function given by
f(x) = (x mod m, x mod n) is a one to one function from an mn element set to an mn element



70 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

set, so it is onto as well.6 In other words, we will have shown that each pair of equations 2.19
and 2.20 has one and only one solution.

In order to show that f is one-to-one, we must show that if x and y are different numbers
between 0 and mn − 1, then f(x) and f(y) are different. To do so, assume instead that we have
an x and y with f(x) = f(y). Then x mod m = y mod m and x mod n = y mod n, so that
(x−y) mod m = 0 and (x−y) mod n = 0. That is, x−y is a multiple of both m and n. Then as
we show in Problem 11 in the problems at the end of this section, x− y is a multiple of mn; that
is, x− y = dmn for some integer d. Since we assumed x and y were different, this means x and y
cannot both be between 0 and mn − 1 because their difference is mn or more. This contradicts
our hypothesis that x and y were different numbers between 0 and mn − 1, so our assumption
must be incorrect; that is f must be one-to-one. This completes the proof of the theorem.

Important Concepts, Formulas, and Theorems

1. Exponentiation in Zn. For a ∈ Zn, and a positive integer j:

aj mod n = a ·n a ·n · · · ·n a︸ ︷︷ ︸
j factors

.

2. Rules of exponents. For any a ∈ Zn, and any nonnegative integers i and j,

(ai mod n) ·n (aj mod n) = ai+j mod n

and
(ai mod n)j mod n = aij mod n.

3. Multiplication by a fixed nonzero a in Zp is a permutation. Let p be a prime number. For any
fixed nonzero number a in Zp, the numbers (1·a) mod p, (2·a) mod p, . . . , ((p−1)·a) mod p,
are a permutation of the set {1, 2, · · · , p − 1}.

4. Fermat’s Little Theorem. Let p be a prime number. Then ap−1 mod p = 1 for each nonzero
a in Zp.

5. Fermat’s Little Theorem, version 2. For every positive integer a and prime p, if a is not a
multiple of p, then

ap−1 mod p = 1.

6. RSA cryptosystem. (The first implementation of a public-key cryptosystem) In the RSA
cryptosystem Bob chooses two prime numbers p and q (which in practice each have at least
a hundred digits) and computes the number n = pq. He also chooses a number e �= 1 which
need not have a large number of digits but is relatively prime to (p − 1)(q − 1), so that it
has an inverse d, and he computes d = e−1 mod (p − 1)(q − 1). Bob publishes e and n. To
send a message x to Bob, Alice sends y = xe mod n. Bob decodes by computing yd mod n.

6If the function weren’t onto, then because the number of pairs is the same as the number of possible x-values,
two x values would have to map to the same pair, so the function wouldn’t be one-to-one after all.
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7. Chinese Remainder Theorem. If m and n are relatively prime integers and a ∈ Zm and
b ∈ Zn, then the equations

x mod m = a

x mod n = b

have one and only one solution for an integer x between 0 and mn − 1.

Problems

1. Compute the powers of 4 in Z7. Compute the powers of 4 in Z10. What is the most striking
similarity? What is the most striking difference?

2. Compute the numbers 1 ·11 5, 2 ·11 5, 3 ·11 5, . . . , 10 ·11 5. Do you get a permutation of the set
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}? Would you get a permutation of the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
if you used another nonzero member of of Z11 in place of 5?

3. Compute the fourth power mod 5 of each element of Z5. What do you observe? What
general principle explains this observation?

4. The numbers 29 and 43 are primes. What is (29− 1)(43− 1)? What is 199 · 1111 in Z1176?
What is (231111)199 in Z29? In Z43? In Z1247?

5. The numbers 29 and 43 are primes. What is (29− 1)(43− 1)? What is 199 · 1111 in Z1176?
What is (1051111)199 in Z29? In Z43? In Z1247? How does this answer the second question
in Exercise 2.3-5?

6. How many solutions with x between 0 and 34 are there to the system of equations

x mod 5 = 4
x mod 7 = 5?

What are these solutions?

7. Compute each of the following. Show or explain your work, and do not use a calculator or
computer.

(a) 1596 in Z97

(b) 6772 in Z73

(c) 6773 in Z73

8. Show that in Zp, with p prime, if ai mod p = 1, then an mod p = an mod i mod p.

9. Show that there are p2 − p elements with multiplicative inverses in Zp2 when p is prime. If
x has a multiplicative inverse in Z2

p , what is xp2−p mod p2? Is the same statement true for
an element without an inverse? (Working out an example might help here.) Can you find
something (interesting) that is true about xp2−p when x does not have an inverse?

10. How many elements have multiplicative inverses in Zpq when p and q are primes?
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11. In the paragraph preceding the proof of Theorem 2.23 we said that if a number is a multiple
of the prime p and the prime q, then it is a multiple of pq. We will see how that is proved
here.

(a) What equation in the integers does Euclid’s extended GCD algorithm solve for us
when m and n are relatively prime?

(b) Suppose that m and n are relatively prime and that k is a multiple of each one of
them; that is, k = bm and k = cn for integers b and c. If you multiply both sides
of the equation in part (a) by k, you get an equation expressing k as a sum of two
products. By making appropriate substitutions in these terms, you can show that k
is a multiple of mn. Do so. Does this justify the assertion we made in the paragraph
preceding the proof of Theorem 2.23?

12. The relation of “congruence modulo n” is the relation ≡ defined by x ≡ y mod n if and
only if x mod n = y mod n.

(a) Show that congruence modulo n is an equivalence relation by showing that it defines
a partition of the integers into equivalence classes.

(b) Show that congruence modulo n is an equivalence relation by showing that it is reflex-
ive, symmetric, and transitive.

(c) Express the Chinese Remainder theorem in the notation of congruence modulo n.

13. Write and implement code to do RSA encryption and decryption. Use it to send a message
to someone else in the class. (You may use smaller numbers than are usually used in
implementing the RSA algorithm for the sake of efficiency. In other words, you may choose
your numbers so that your computer can multiply them without overflow.)

14. For some non-zero a ∈ Zp, where p is prime, consider the set

S = {a0 mod p, a1 mod p, a2 mod p, . . . , ap−2 mod p, ap−1 mod p},

and let s = |S|. Show that s is always a factor of p − 1.

15. Show that if xn−1 mod n = 1 for all integers x that are not multiples of n, then n is prime.
(The slightly weaker statement that xn−1 mod n = 1 for all x relatively prime to n, does
not imply that n is prime. There is a famous family of numbers called Carmichael numbers
that are counterexamples.7)

7See, for example, Cormen, Leiserson, Rivest, and Stein, cited earlier.
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2.4 Details of the RSA Cryptosystem

In this section, we deal with some issues related to implementing the RSA cryptosystem: expo-
nentiating large numbers, finding primes, and factoring.

Practical Aspects of Exponentiation mod n

Suppose you are going to raise a 100 digit number a to the 10120th power modulo a 200 digit
integer n. Note that the exponent is a 121 digit number.

Exercise 2.4-1 Propose an algorithm to compute a10120
mod n, where a is a 100 digit

number and n is a 200 digit number.

Exercise 2.4-2 What can we say about how long this algorithm would take on a computer
that can do one infinite precision arithmetic operation in constant time?

Exercise 2.4-3 What can we say about how long this would take on a computer that can
multiply integers in time proportional to the product of the number of digits in the
two numbers, i.e. multiplying an x-digit number by a y-digit number takes roughly
xy time?

Notice that if we form the sequence a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11 we are modeling
the process of forming a11 by successively multiplying by a. If, on the other hand, we form
the sequence a, a2, a4, a8, a16, a32, a64, a128, a256, a512, a1024, we are modeling the process of
successive squaring, and in the same number of multiplications we are able to get a raised to a
four digit number. Each time we square we double the exponent, so every ten steps or so we will
add three to the number of digits of the exponent. Thus in a bit under 400 multiplications, we
will get a10120

. This suggests that our algorithm should be to square a some number of times
until the result is almost a10120

, and then multiply by some smaller powers of a until we get
exactly what we want. More precisely, we square a and continue squaring the result until we get
the largest a2k1 such that 2k1 is less than 10120, then multiply a2k1 by the largest a2k2 such that
2k1 + 2k2 is less than 10120 and so on until we have

10120 = 2k1 + 2k2 + · · · + 2kr

for some integer r. (Can you connect this with the binary representation of 10120?) Then we get

a10120
= a2k1

a2k2 · · · a2kr
.

Notice that all these powers of a have been computed in the process of discovering k1. Thus it
makes sense to save them as you compute them.

To be more concrete, let’s see how to compute a43. We may write 43 = 32 + 8 + 2 + 1, and
thus

a43 = a25
a23

a21
a20

. (2.21)

So, we first compute a20
, a21

, a22
, a23

a24
, a25

, using 5 multiplications. Then we can compute
a43, via equation 2.21, using 3 additional multiplications. This saves a large number of multipli-
cations.
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On a machine that could do infinite precision arithmetic in constant time, we would need
about log2(10120) steps to compute all the powers a2i

, and perhaps equally many steps to do the
multiplications of the appropriate powers. At the end we could take the result mod n. Thus
the length of time it would take to do these computations would be more or less 2 log2(10120) =
240 log2 10 times the time needed to do one operation. (Since log2 10 is about 3.33, it will take
at most 800 times the amount of time for one operation to compute a10120

. )

You may not be used to thinking about how large the numbers get when you are doing
computation. Computers hold fairly large numbers (4-byte integers in the range roughly −231

to 231 are typical), and this suffices for most purposes. Because of the way computer hardware
works, as long as numbers fit into one 4-byte integer, the time to do simple arithmetic operations
doesn’t depend on the value of the numbers involved. (A standard way to say this is to say
that the time to do a simple arithmetic operation is constant.) However, when we talk about
numbers that are much larger than 231, we have to take special care to implement our arithmetic
operations correctly, and also we have to be aware that operations are slower.

Since 210 = 1024, we have that 231 is twice as big as 230 = (210)3 = (1024)3 and so is
somewhat more than two billion, or 2 · 109. In particular, it is less than 1010. Since 10120 is a
one followed by 120 zeros, raising a positive integer other than one to the 10120th power takes
us completely out of the realm of the numbers that we are used to making exact computations
with. For example, 10(10120) has 119 more zeros following the 1 in the exponent than does 1010.

It is accurate to assume that when multiplying large numbers, the time it takes is roughly
proportional to the product of the number of digits in each. If we computed our 100 digit number
to the 10120th power, we would be computing a number with more than 10120 digits. We clearly
do not want to be doing computation on such numbers, as our computer cannot even store such
a number!

Fortunately, since the number we are computing will ultimately be taken modulo some 200
digit number, we can make all our computations modulo that number. (See Lemma 2.3.) By
doing so, we ensure that the two numbers we are multiplying together have at most 200 digits,
and so the time needed for the problem proposed in Exercise 2.4-1 would be a proportionality
constant times 40,000 times log2(10120) times the time needed for a basic operation plus the time
needed to figure out which powers of a are multiplied together, which would be quite small in
comparison.

Note that this algorithm, on 200 digit numbers, is as much as 40, 000 times slower than on
simple integers. This is a noticeable effect and if you use or write an encryption program, you
can see this effect when you run it. However, we can still typically do this calculation in less than
a second, a small price to pay for secure communication.

How long does it take to use the RSA Algorithm?

Encoding and decoding messages according to the RSA algorithm requires many calculations.
How long will all this arithmetic take? Let’s assume for now that Bob has already chosen p,
q, e, and d, and so he knows n as well. When Alice wants to send Bob the message x, she
sends xe mod n. By our analyses in Exercise 2.4-2 and Exercise 2.4-3 we see that this amount
of time is more or less proportional to log2 e, which is itself proportional to the number of digits
of e, though the first constant of proportionality depends on the method our computer uses to
multiply numbers. Since e has no more than 200 digits, this should not be too time consuming
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for Alice if she has a reasonable computer. (On the other hand, if she wants to send a message
consisting of many segments of 200 digits each, she might want to use the RSA system to send a
key for another simpler (secret key) system, and then use that simpler system for the message.)

It takes Bob a similar amount of time to decode, as he has to take the message to the dth
power, mod n.

We commented already that nobody knows a fast way to find x from xe mod n. In fact,
nobody knows that there isn’t a fast way either, which means that it is possible that the RSA
cryptosystem could be broken some time in the future. We also don’t know whether extracting
eth roots mod n is in the class of NP-complete problems, an important family of problems with
the property that a reasonably fast solution of any one of them will lead to a reasonably fast
solution of any of them. We do know that extracting eth roots is no harder than these problems,
but it may be easier.

However, here someone is not restricted to extracting roots to discover x. Someone who
knows n and knows that Bob is using the RSA system, could presumably factor n, discover p
and q, use the extended GCD algorithm to compute d and then decode all of Bob’s messages.
However, nobody knows how to factor integers quickly either. Again, we don’t know if factoring
is NP-complete, but we do know that it is no harder than the NP-complete problems. Thus here
is a second possible way around the RSA system. However, enough people have worked on the
factoring problem, that most people are confident that it is in fact difficult, in which case the
RSA system is safe, as long as we use keys that are long enough.

How hard is factoring?

Exercise 2.4-4 Factor 225,413. (The idea is to try to do this without resorting to com-
puters, but if you give up by hand and calculator, using a computer is fine.)

With current technology, keys with roughly 100 digits are not that hard to crack. In other
words, people can factor numbers that are roughly 100 digits long, using methods that are a little
more sophisticated than the obvious approach of trying all possible divisors. However, when the
numbers get long, say over 120 digits, they become very hard to factor. The record, as of the year
2000, for factoring is a roughly 155-digit number. To factor this number, thousands of computers
around the world were used, and it took several months. So given the current technology, RSA
with a 200 digit key seems to be very secure.

Finding large primes

There is one more issue to consider in implementing the RSA system for Bob. We said that Bob
chooses two primes of about a hundred digits each. But how does he choose them? It follows
from some celebrated work on the density of prime numbers that if we were to choose a number
m at random, and check about loge(m) numbers around m for primality, we would expect that
one of these numbers was prime. Thus if we have a reasonably quick way to check whether a
number is prime, we shouldn’t have to guess too many numbers, even with a hundred or so digits,
before we find one we can show is prime.

However, we have just mentioned that nobody knows a quick way to find any or all factors
of a number. The standard way of proving a number is prime is by showing that it and 1 are
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its only factors. For the same reasons that factoring is hard, the simple approach to primality
testing, test all possible divisors, is much too slow. If we did not have a faster way to check
whether a number is prime, the RSA system would be useless.

In August of 2002, Agrawal, Kayal and Saxena announced an algorithm for testing whether
an integer n is prime which they can show takes no more than the twelveth power of the number
of digits of n to determine whether n is prime, and in practice seems to take significantly less
time. While the algorithm requires more than the background we are able to provide in this
book, its description and the proof that it works in the specified time uses only results that one
might find in an undergraduate abstract algebra course and an undergraduate number theory
course! The central theme of the algorithm is the use of a variation of Fermat’s Little Theorem.

In 1976 Miller8 was able to use Fermat’s Little Theorem to show that if a conjecture called
the “Extended Reiman Hypothesis” was true, then an algorithm he developed would determine
whether a number n was prime in a time bounded above by a polynomial in the number of digits
of n. In 1980 Rabin9 modified Miller’s method to get one that would determine in polynomial
time whether a number was prime without the extra hypothesis, but with a probability of error
that could be made as small a positive number as one might desire, but not zero. We describe the
general idea behind all of these advances in the context of what people now call the Miller-Rabin
primality test. As of the writing of this book, variations on this kind of algorithm are used to
provide primes for cryptography.

We know, by Fermat’s Little Theorem, that in Zp with p prime, xp−1 mod p = 1 for every x
between 1 and p − 1. What about xm−1, in Zm, when m is not prime?

Exercise 2.4-5 Suppose x is a member of Zm that has no multiplicative inverse. Is it
possible that xn−1 mod n = 1?

We answer the question of the exercise in our next lemma.

Lemma 2.25 Let m be a non-prime, and let x be a number in Zm which has no multiplicative
inverse. Then xm−1 mod m �= 1.

Proof: Assume, for the purpose of contradiction, that

xm−1 mod m = 1.

Then
x · xm−2 mod m = 1.

But then xm−2 mod m is the inverse of x in Zm, which contradicts the fact that x has no
multiplicative inverse. Thus it must be the case that xm−1 mod m �= 1.

This distinction between primes and non-primes gives the idea for an algorithm. Suppose we
have some number m, and are not sure whether it is prime or not. We can run the following
algorithm:

8G.L. Miller. “Riemann’s Hypothesis and tests for primality,” J. Computer and Systems Science 13, 1976, pp
300-317.

9M. O. Rabin. “Probabilistic algorithm for testing primality.” Journal of Number Theory, 12, 1980. pp 128-138.
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(1) PrimeTest(m)
(2) choose a random number x, 2 ≤ x ≤ m − 1.
(3) compute y = xm−1 mod m
(4) if (y = 1)
(5) output ‘‘ m might be prime’’
(6) else
(7) output ‘‘m is definitely not prime’’

Note the asymmetry here. If y �= 1, then m is definitely not prime, and we are done. On
the other hand, if y = 1, then the m might be prime, and we probably want to do some other
calculations. In fact, we can repeat the algorithm Primetest(m) for t times, with a different
random number x each time. If on any of the t runs, the algorithm outputs “m is definitely not
prime”, then the number m is definitely not prime, as we have an x for which xm−1 �= 1. On
the other hand, if on all t runs, the algorithm Primetest(m) outputs “m might be prime”, then,
with reasonable certainty, we can say that the number m is prime. This is actually an example
of a randomized algorithm; we will be studying these in greater detail later in the course. For
now, let’s informally see how likely it is that we make a mistake.

We can see that the chance of making a mistake depends on, for a particular non-prime m,
exactly how many numbers a have the property that am−1 = 1. If the answer is that very few
do, then our algorithm is very likely to give the correct answer. On the other hand, if the answer
is most of them, then we are more likely to give an incorrect answer.

In Exercise 12 at the end of the section, you will show that the number of elements in Zm

without inverses is at least
√

m. In fact, even many numbers that do have inverses will also fail
the test xm−1 = 1. For example, in Z12 only 1 passes the test while in Z15 only 1 and 14 pass the
test. (Z12 really is not typical; can you explain why? See Problem 13 at the end of this section
for a hint.)

In fact, the Miller-Rabin algorithm modifies the test slightly (in a way that we won’t describe
here10) so that for any non-prime m, at least half of the possible values we could choose for x
will fail the modified test and hence will show that m is composite. As we will see when we
learn about probability, this implies that if we repeat the test t times, and assert that an x which
passes these t tests is prime, the probability of being wrong is actually 2−t. So, if we repeat
the test 10 times, we have only about a 1 in a thousand chance of making a mistake, and if we
repeat it 100 times, we have only about a 1 in 2100 (a little less than one in a nonillion) chance
of making a mistake!

Numbers we have chosen by this algorithm are sometimes called pseudoprimes. They are
called this because they are very likely to be prime. In practice, pseudoprimes are used instead
of primes in implementations of the RSA cryptosystem. The worst that can happen when a
pseudoprime is not prime is that a message may be garbled; in this case we know that our
pseudoprime is not really prime, and choose new pseudoprimes and ask our sender to send the
message again. (Note that we do not change p and q with each use of the system; unless we were
to receive a garbled message, we would have no reason to change them.)

A number theory theorem called the Prime Number Theorem tells us that if we check about
loge n numbers near n we can expect one of them to be prime. A d digit number is at least 10d−1

10See, for example, Cormen, Leiserson, Rivest and Stein, Introduction to Algorithms, McGraw Hill/MIT Press,
2002
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and less than 10d, so its natural logarithm is between (d − 1) loge 10 and d loge 10. if we want to
find a d digit prime, we can take any d digit number and test about d loge 10 numbers near it for
primality, and it is reasonable for us to expect that one of them will turn out to be prime. The
number loge 10 is 2.3 to two decimal places. Thus it does not take a really large amount of time
to find two prime numbers with a hundred (or so) digits each.

Important Concepts, Formulas, and Theorems

1. Exponentiation. To perform exponentiation mod n efficiently, we use repeated squaring,
and take mods after each arithmetic operation.

2. Security of RSA. The security of RSA rests on the fact that no one has developed an
efficient algorithm for factoring, or for finding x, given xe mod n.

3. Fermat’s Little Theorem does not hold for composites. Let m b e a non-prime, and let x be
a number in Zn which has no multiplicative inverse. Then xm−1 mod m �= 1.

4. Testing numbers for primality. The randomized Miller-Rabin algorithm will tell you almost
surely if a given number is prime.

5. Finding prime numbers. By applying the randomized Miller-Rabin to d ln 10 (which is
about 2.3d) numbers with d digits, you can expect to find at least one that is prime.

Problems

1. What is 31024 in Z7? (This is a straightforward problem to do by hand.)

2. Suppose we have computed a2, a4, a8, a16 and a32. What is the most efficient way for us
to compute a53?

3. A gigabyte is one billion bytes; a terabyte is one trillion bytes. A byte is eight bits, each
a zero or a 1. Since 210 = 1024, which is about 1000, we can store about three digits
(any number between 0 and 999) in ten bits. About how many decimal digits could we
store in a five gigabytes of memory? About how many decimal digits could we store in five
terabytes of memory? How does this compare to the number 10120? To do this problem it
is reasonable to continue to assume that 1024 is about 1000.

4. Find all numbers a different from 1 and −1 (which is the same as 8) such that a8 mod 9 = 1.

5. Use a spreadsheet, programmable calculator or computer to find all numbers a different from
1 and −1 mod 33 = 32 with a32 mod 33 = 1. (This problem is relatively straightforward to
do with a spreadsheet that can compute mods and will let you “fill in” rows and columns
with formulas. However you do have to know how to use the spreadsheet in this way to
make it strightforward!)

6. How many digits does the 10120th power of 10100 have?

7. If a is a 100 digit number, is the number of digits of a10120
closer to 10120 or 10240? Is it a

lot closer? Does the answer depend on what a actually is rather than the number of digits
it has?
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8. Explain what our outline of the solution to Exercise 2.4-1 has to do with the binary repre-
sentation of 10120.

9. Give careful pseudocode to compute ax mod n. Make your algorithm as efficient as possible.
You may use right shift n in your algorithm.

10. Suppose we want to compute ae1e2···em mod n. Discuss whether it makes sense to reduce
the exponents mod n as we compute their product. In particular, what rule of exponents
would allow us to do this, and do you think this rule of exponents makes sense?

11. Number theorists use ϕ(n) to stand for the number of elements of Zn that have inverses.
Suppose we want to compute ae1e2···em mod n. Would it make sense for us to reduce our
exponents mod ϕ(n) as we compute their product? Why?

12. Show that if m is not prime, then at least
√

m elements of Zm do not have multiplicative
inverses.

13. Show that in Zp+1, where p is prime, only one element passes the primality test xm−1 = 1
(mod m). (In this case, m = p + 1.)

14. Suppose for RSA, p = 11, q = 19, and e = 7. What is the value of d? Show how to encrypt
the message 100, and then show how to decrypt the resulting message.

15. Suppose for applying RSA, p = 11, q = 23, and e = 13. What is the value of d? Show how
to encrypt the message 100 and then how to decrypt the resulting message.

Applying the extended GCD algorithm, or just by experimenting we see that d = 17.
n = pq = 253. Then

10013 mod 253 = 1026 mod 253 = (−12)8 · 100 mod 253
= (100(124 mod 253)(124 mod 253)) mod 253 = 133.

To reverse the process,

13317 = (((1334 mod 253)4 mod 253) · 133) mod 253 = 210 · 133 mod 253 = 100.

16. A digital signature is a way to securely sign a document. That is, it is a way to put your
“signature” on a document so that anyone reading it knows that it is you who have signed
it, but no one else can “forge” your signature. The document itself may be public; it is
your signature that we are trying to protect. Digital signatures are, in a way, the opposite
of encryption, as if Bob wants to sign a message, he first applies his signature to it (think
of this as encryption) and then the rest of the world can easily read it (think of this as
decryption). Explain, in detail, how to achieve digital signatures, using ideas similar to
those used for RSA. In particular, anyone who has the document and has your signature
of the document (and knows your public key) should be able to determine that you signed
it.
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Chapter 3

Reflections on Logic and Proof

In this chapter, we cover some basic principles of logic and describe some methods for constructing
proofs. This chapter is not meant to be a complete enumeration of all possible proof techniques.
The philosophy of this book is that most people learn more about proofs by reading, watching,
and attempting proofs than by an extended study of the logical rules behind proofs. On the
other hand, now that we have some examples of proofs, it will help you read and do proofs if we
reflect on their structure and to discuss what constitutes a proof. To do so so we first develop a
language that will allow us to talk about proofs, and then we use this language to describe the
logical structure of a proof.

3.1 Equivalence and Implication

Equivalence of statements

Exercise 3.1-1 A group of students are working on a project that involves writing a merge
sort program. Joe and Mary have each written an algorithm for a function that takes
two lists, List1 and List2, of lengths p and q and merges them into a third list,
List3. Part of Mary’s algorithm is the following:

(1) if ((i + j ≤ p + q) && (i ≤ p) && ((j ≥ q)||(List1[i] ≤ List2[j])))
(2) List3[k] = List1[i]
(3) i = i + 1
(4) else
(5) List3[k] = List2[j]
(6) j = j + 1

(7) k = k + 1
(8) Return List3

The corresponding part of Joe’s algorithm is

(1) if (((i + j ≤ p + q) && (i ≤ p) && (j ≥ q))
|| ((i + j ≤ p + q) && (i ≤ p) && (List1[i] ≤ List2[j])))

81
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(2) List3[k] = List1[i]
(3) i = i + 1
(4) else
(5) List3[k] = List2[j]
(6) j = j + 1

(7) k = k + 1
(8) Return List3

Do Joe and Mary’s algorithms do the same thing?

Notice that Joe and Mary’s algorithms are exactly the same except for the if statement in
line 1. (How convenient; they even used the same local variables!) In Mary’s algorithm we put
entry i of List1 into position k of List3 if

i + j ≤ p + q and i ≤ p and (j ≥ q or List1[i] ≤ List2[j]),

while in Joe’s algorithm we put entry i of List1 into position k of List3 if

(i+j ≤ p+q and i ≤ p and j ≥ q) or (i+j ≤ p+q and i ≤ p and List1[i] ≤ List2[j]).

Joe and Mary’s statements are both built up from the same constituent parts (namely com-
parison statements), so we can name these constituent parts and rewrite the statements. We
use

• s to stand for i + j ≤ p + q,

• t to stand for i ≤ p,

• u to stand for j ≥ q, and

• v to stand for List1[i] ≤ List2[j]

The condition in Mary’s if statement on Line 1 of her code becomes

s and t and (u or v)

while Joe’s if statement on Line 1 of his code becomes

(s and t and u) or (s and t and v).

By recasting the statements in this symbolic form, we see that s and t always appear together
as “s and t.” We can thus simplify their expressions by substituting w for “s and t.” Mary’s
condition now has the form

w and (u or v)

and Joe’s has the form
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(w and u) or (w and v).

Although we can argue, based on our knowledge of the structure of the English language,
that Joe’s statement and Mary’s statement are saying the same thing, it will help us understand
logic if we formalize the idea of “saying the same thing.” If you look closely at Joe’s and Mary’s
statements, you can see that we are saying that, the word “and” distributes over the word “or,”
just as set intersection distributes over set union, and multiplication distributes over addition.
In order to analyze when statements mean the same thing, and explain more precisely what we
mean when we say something like “and” distributes over “or,” logicians have adopted a standard
notation for writing symbolic versions of compound statements. We shall use the symbol ∧ to
stand for “and” and ∨ to stand for “or.” In this notation, Mary’s condition becomes

w ∧ (u ∨ v)

and Joe’s becomes

(w ∧ u) ∨ (w ∧ v).

We now have a nice notation (which makes our compound statements look a lot like the two
sides of the distributive law for intersection of sets over union), but we have not yet explained why
two statements with this symbolic form mean the same thing. We must therefore give a precise
definition of “meaning the same thing,” and develop a tool for analyzing when two statements
satisfy this definition. We are going to consider symbolic compound statements that may be
built up from the following notation:

• symbols (s, t, etc.) standing for statements (these will be called variables),

• the symbol ∧, standing for “and,”

• the symbol ∨, standing for “or,”

• the symbol ⊕ standing for “exclusive or,” and

• the symbol ¬, standing for “not.”

Truth tables

We will develop a theory for deciding when a compound statement is true based on the truth or
falsity of its component statements. Using this theory, we will determine, for a particular setting
of variables, say s, t and u, whether a particular compound statement, say (s ⊕ t) ∧ (¬u ∨ (s ∧
t))∧¬(s⊕(t∨u)), is true or false. Our technique uses truth tables, which you have probably seen
before. We will see how truth tables are the proper tool to determine whether two statements
are equivalent.

As with arithmetic, the order of operations in a logical statement is important. In our sample
compound statement (s ⊕ t) ∧ (¬u ∨ (s ∧ t)) ∧ ¬(s ⊕ (t ∨ u)) we used parentheses to make it
clear which operation to do first, with one exception, namely our use of the ¬ symbol. The
symbol ¬ always has the highest priority, which means that when we wrote ¬u∨(s∧ t), we meant
(¬u) ∨ (s ∧ t), rather than ¬(u ∨ (s ∧ t)). The principle we use here is simple; the symbol ¬
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applies to the smallest number of possible following symbols needed for it to make sense. This
is the same principle we use with minus signs in algebraic expressions. With this one exception,
we will always use parentheses to make the order in which we are to perform operations clear;
you should do the same.

The operators ∧, ∨, ⊕ and ¬ are called logical connectives. The truth table for a logical
connective states, in terms of the possible truth or falsity of the component parts, when the
compound statement made by connecting those parts is true and when it is false. The the truth
tables for the connectives we have mentioned so far are in Figure 3.1

Figure 3.1: The truth tables for the basic logical connectives.

AND
s t s ∧ t

T T T
T F F
F T F
F F F

OR
s t s ∨ t

T T T
T F T
F T T
F F F

XOR
s t s ⊕ t

T T F
T F T
F T T
F F F

NOT
s s ⊕ t

T F
F T

These truth tables define the words “and,” “or,” “exclusive or” (“xor” for short), and “not”
in the context of symbolic compound statements. For example, the truth table for ∨—or—tells
us that when s and t are both true, then so is “s or t.” It tells us that when s is true and t is
false, or s is false and t is true, then “s or t” is true. Finally it tells us that when s and t are both
false, then so is “s or t.” Is this how we use the word “or” in English? The answer is sometimes!
The word “or” is used ambiguously in English. When a teacher says “Each question on the test
will be short answer or multiple choice,” the teacher is presumably not intending that a question
could be both. Thus the word “or” is being used here in the sense of “exclusive or”—the “⊕” in
the truth tables above. When someone says “Let’s see, this afternoon I could take a walk or I
could shop for some new gloves,” she probably does not mean to preclude the possibility of doing
both—perhaps even taking a walk downtown and then shopping for new gloves before walking
back. Thus in English, we determine the way in which someone uses the word “or” from context.
In mathematics and computer science we don’t always have context and so we agree that we will
say “exclusive or” or “xor” for short when that is what we mean, and otherwise we will mean
the “or” whose truth table is given by ∨. In the case of “and” and “not” the truth tables are
exactly what we would expect.

We have been thinking of s and t as variables that stand for statements. The purpose of
a truth table is to define when a compound statement is true or false in terms of when its
component statements are true and false. Since we focus on just the truth and falsity of our
statements when we are giving truth tables, we can also think of s and t as variables that can
take on the values “true” (T) and “false” (F). We refer to these values as the truth values of s
and t. Then a truth table gives us the truth values of a compound statement in terms of the
truth values of the component parts of the compound statement. The statements s ∧ t, s ∨ t
and s ⊕ t each have two component parts, s and t. Because there are two values we can assign
to s, and for each value we assign to s there are two values we can assign to t, by the product
principle, there are 2 · 2 = 4 ways to assign truth values to s and t. Thus we have four rows in
our truth table, one for each way of assigning truth values to s and t.

For a more complex compound statement, such as the one in Line 1 in Joe and Mary’s
programs, we still want to describe situations in which the statement is true and situations in
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Table 3.1: The truth table for Joe’s statement

w u v u ∨ v w ∧ (u ∨ v)
T T T T T
T T F T T
T F T T T
T F F F F
F T T T F
F T F T F
F F T T F
F F F F F

which the statement is false. We will do this by working out a truth table for the compound
statement from the truth tables of its symbolic statements and its connectives. We use a variable
to represent the truth value each symbolic statement. The truth table has one column for each of
the original variables, and for each of the pieces we use to build up the compound statement. The
truth table has one row for each possible way of assigning truth values to the original variables.
Thus if we have two variables, we have, as above, four rows. If we have just one variable, then
we have, as above, just two rows. If we have three variables then we will have 23 = 8 rows, and
so on.

In Table 3.1 we give the truth table for the symbolic statement that we derived from Line 1
of Joe’s algorithm. The columns to the left of the double line contain the possible truth values of
the variables; the columns to the right correspond to various sub-expressions whose truth values
we need to compute. We give the truth table as many columns as we need in order to correctly
compute the final result; as a general rule, each column should be easily computed from one or
two previous columns.

In Table 3.2 we give the truth table for the statement that we derived from Line 1 of Mary’s
algorithm.

Table 3.2: The truth table for Mary’s statement

w u v w ∧ u w ∧ v (w ∧ u) ∨ (w ∧ v)
T T T T T T
T T F T F T
T F T F T T
T F F F F F
F T T F F F
F T F F F F
F F T F F F
F F F F F F

You will notice that the pattern of T’s and F’s that we used to the left of the double line
in both Joe’s and Mary’s truth tables are the same—namely, reverse alphabetical order.1 Thus

1Alphabetical order is sometimes called lexicographic order. Lexicography is the study of the principles and



86 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

row i of Table 3.1 represents exactly the same assignment of truth values to u , v, and w as
row i of Table 3.2. The final columns of the two truth tables are identical, which means that
Joe’s symbolic statement and Mary’s symbolic statement are true in exactly the same cases.
Therefore, the two statements must say the same thing, and Mary and Joe’s program segments
return exactly the same values. We say that two symbolic compound statements are equivalent
if they are true in exactly the same cases. Alternatively, two statements are equivalent if their
truth tables have the same final column (assuming both tables assign truth values to the original
symbolic statements in the same pattern).

Tables 3.1 and 3.2 actually prove a distributive law:

Lemma 3.1 The statements
w ∧ (u ∨ v)

and
(w ∧ u) ∨ (w ∧ v)

are equivalent.

DeMorgan’s Laws

Exercise 3.1-2 DeMorgan’s Laws say that ¬(p ∨ q) is equivalent to ¬p ∧ ¬q, and that
¬(p ∧ q) is equivalent to ¬p ∨ ¬q,. Use truth tables to demonstrate that DeMorgan’s
laws are correct.

Exercise 3.1-3 Show that p⊕q, the exclusive or of p and q, is equivalent to (p∨q)∧¬(p∧q).
Apply one of DeMorgan’s laws to ¬(¬(p ∨ q)) ∧ ¬(p ∧ q) to find another symbolic
statement equivalent to the exclusive or.

To verify the first DeMorgan’s Law, we create a pair of truth tables that we have condensed into
one “double truth table” in Table 3.3. The second double vertical line separates the computation
of the truth values of ¬(p∨q) and ¬p∧¬q We see that the fourth and the last columns are identical,

Table 3.3: Proving the first DeMorgan Law.

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q

T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

and therefore the first DeMorgan’s Law is correct. We can verify the second of DeMorgan’s Laws
by a similar process.

To show that p ⊕ q is equivalent to (p ∨ q) ∧ ¬(p ∧ q), we use the “double truth table” in
Table 3.4.

practices used in making dictionaries. Thus you will also see the order we used for the T’s and F’s called reverse
lexicographic order, or reverse lex order for short.
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Table 3.4: An equivalent statement to p ⊕ q.

p q p ⊕ q p ∨ q p ∧ q ¬(p ∧ q) (p ∨ q) ∧ ¬(p ∧ q)
T T F T T F F
T F T T F T T
F T T T F T T
F F F F F T F

By applying DeMorgan’s law to ¬(¬(p∨ q))∧¬(p∧ q), we see that p⊕ q is also equivalent to
¬(¬(p ∨ q) ∨ (p ∧ q)). It was easier to use DeMorgan’s law to show this equivalence than to use
another double truth table.

Implication

Another kind of compound statement occurs frequently in mathematics and computer science.
Recall 2.21, Fermat’s Little Theorem:

If p is a prime, then ap−1 mod p = 1 for each non-zero a ∈ Zp.

Fermat’s Little Theorem combines two constituent statements,

p is a prime

and

ap−1 mod p = 1 for each non-zero a ∈ Zp.

We can also restate Fermat’s Little Theorem (a bit clumsily) as

p is a prime only if ap−1 mod p = 1 for each non-zero a ∈ Zp,

or

p is a prime implies ap−1 mod p = 1 for each non-zero a ∈ Zp,

or

ap−1 mod p = 1 for each non-zero a ∈ Zp if p is prime.

Using s to stand for “p is a prime” and t to stand for “ap−1 mod p = 1 for every non-zero
a ∈ Zp,” we symbolize any of the four statements of Fermat’s Little Theorem as

s ⇒ t,

which most people read as “s implies t.” When we translate from symbolic language to English,
it is often clearer to say “If s then t.”

We summarize this discussion in the following definition:
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Definition 3.1 The following four English phrases are intended to mean the same thing. In
other words, they are defined by the same truth table:

• s implies t,

• if s then t,

• t if s, and

• s only if t.

Observe that the use of “only if” may seem a little different than the normal usage in English.
Also observe that there are still other ways of making an “if . . . then” statement in English. In a
number of our lemmas, theorems, and corollaries (for example, Corollary 2.6 and Lemma 2.5) we
have had two sentences. In the first we say “Suppose . . . .” In the second we say “Then . . . .” The
two sentences “Suppose s.” and “Then t.” are equivalent to the single sentence s ⇒ t. When we
have a statement equivalent to s ⇒ t, we call the statement s the hypothesis of the implication
and we call the statement t the conclusion of the implication.

If and only if

The word “if” and the phrase “only if” frequently appear together in mathematical statements.
For example, in Theorem 2.9 we proved

A number a has a multiplicative inverse in Zn if and only if there are integers x and
y such that ax + ny = 1.

Using s to stand for the statement “a number a has a multiplicative inverse in Zn” and t to stand
for the statement “there are integers x and y such that ax+ny = 1,” we can write this statement
symbolically as

s if and only if t.

Referring to Definition 3.1, we parse this as

s if t, and s only if t,

which again by the definition above is the same as

s ⇒ t and t ⇒ s.

We denote the statement “s if and only if t” by s ⇔ t. Statements of the form s ⇒ t and s ⇔ t are
called conditional statements, and the connectives ⇒ and ⇔ are called conditional connectives.

Exercise 3.1-4 Use truth tables to explain the difference between s ⇒ t and s ⇔ t.
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In order to be able to analyze the truth and falsity of statements involving “implies” and “if
and only if,” we need to understand exactly how they are different. By constructing truth tables
for these statements, we see that there is only one case in which they could have different truth
values. In particular if s is true and t is true, then we would say that both s ⇒ t and s ⇔ t are
true. If s is true and t is false, we would say that both s ⇒ t and s ⇔ t are false. In the case
that both s and t are false we would say that s ⇔ t is true. What about s ⇒ t? Let us try an
example. Suppose that s is the statement “it is supposed to rain” and t is the statement “I carry
an umbrella.” Then if, on a given day, it is not supposed to rain and I do not carry an umbrella,
we would say that the statement “if it is supposed to rain then I carry an umbrella” is true on
that day. This suggests that we also want to say s ⇒ t is true if s is false and t is false.2 Thus
the truth tables are identical in rows one, two, and four. For “implies” and “if and only if” to
mean different things, the truth tables must therefore be different in row three. Row three is the
case where s is false and t is true. Clearly in this case we would want s if and only if t to be
false, so our only choice is to say that s ⇒ t is true in this case. This gives us the truth tables in
Figure 3.2.

Figure 3.2: The truth tables for “implies” and for “if and only if.”

IMPLIES
s t s ⇒ t

T T T
T F F
F T T
F F T

IF AND ONLY IF
s t s ⇔ t

T T T
T F F
F T F
F F T

Here is another place where (as with the usage for “or”) English usage is sometimes inconsis-
tent. Suppose a parent says “I will take the family to McDougalls for dinner if you get an A on
this test,” and even though the student gets a C, the parent still takes the family to McDougalls
for dinner. While this is something we didn’t expect, was the parent’s statement still true? Some
people would say “yes”; others would say “no”. Those who would say “no” mean, in effect,
that in this context the parent’s statement meant the same as “I will take the family to dinner
at McDougalls if and only if you get an A on this test.” In other words, to some people, in
certain contexts, “If” and “If and only if” mean the same thing! Fortunately questions of child
rearing aren’t part of mathematics or computer science (at least not this kind of question!). In
mathematics and computer science, we adopt the two truth tables just given as the meaning of
the compound statement s ⇒ t (or “if s then t” or “t if s”) and the compound statement s ⇔ t
(or “s if and only if t.”) In particular, the truth table marked IMPLIES is the truth table referred
to in Definition 3.1. This truth table thus defines the mathematical meaning of s implies t, or
any of the other three statements referred to in that definition.

Some people have difficulty using the truth table for s ⇒ t because of this ambiguity in
English. The following example can be helpful in resolving this ambiguity. Suppose that I hold

2Note that we are making this conclusion on the basis of one example. Why can we do so? We are not trying
to prove something, but trying to figure out what the appropriate definition is for the ⇒ connective. Since we
have said that the truth or falsity of s ⇒ t depends only on the truth or falsity of s and t, one example serves to
lead us to an appropriate definition. If a different example led us to a different definition, then we would want to
define two different kinds of implications, just as we have two different kinds of “ors,” ∨ and ⊕. Fortunately, the
only kinds of conditional statements we need for doing mathematics and computer science are “implies” and “if
and only if.”
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an ordinary playing card (with its back to you) and say “If this card is a heart, then it is a
queen.” In which of the following four circumstances would you say I lied:

1. the card is a heart and a queen

2. the card is a heart and a king

3. the card is a diamond and a queen

4. the card is a diamond and a king?

You would certainly say I lied in the case the card is the king of hearts, and you would certainly
say I didn’t lie if the card is the queen of hearts. Hopefully in this example, the inconsistency
of English language seems out of place to you and you would not say I am a liar in either of the
other cases. Now we apply the principle called the principle of the excluded middle

Principle 3.1 A statement is true exactly when it is not false.

This principle tells us that that my statement is true in the three cases where you wouldn’t say
I lied. We used this principle implicitly before when we introduced the principle of proof by
contradiction, Principle 2.1. We were explaining the proof of Corollary 2.6, which states

Suppose there is a b in Zn such that the equation

a ·n x = b

does not have a solution. Then a does not have a multiplicative inverse in Zn.

We had assumed that the hypothesis of the corollary was true so that a ·n x = b does not have
a solution. Then we assumed the conclusion that a does not have a multiplicative inverse was
false. We saw that these two assumptions led to a contradiction, so that it was impossible for
both of them to be true. Thus we concluded whenever the first assumption was true, the second
had to be false. Why could we conclude this? Because the principle of the excluded middle says
that the second assumption has to be either true or false. We didn’t introduce the principle of
the excluded middle at this point for two reasons. First, we expected that the reader would agree
with our proof even if we didn’t mention the principle, and second, we didn’t want to confuse
the reader’s understanding of proof by contradiction by talking about two principles at once!

Important Concepts, Formulas, and Theorems

1. Logical statements. Logical statements may be built up from the following notation:

• symbols (s, t, etc.) standing for statements (these will be called variables),

• the symbol ∧, standing for “and,”

• the symbol ∨, standing for “or,”

• the symbol ⊕ standing for “exclusive or,”

• the symbol ¬, standing for “not,”
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• the symbol ⇒, standing for “implies,” and

• the symbol ⇔ , standing for “if and only if.”

The operators ∧, ∨, ⊕, ⇒, ⇔, and ¬ are called logical connectives. The operators ⇒ and
⇔ are called conditional connectives.

2. Truth Tables. The following are truth tables for the basic logical connectives:

AND
s t s ∧ t

T T T
T F F
F T F
F F F

OR
s t s ∨ t

T T T
T F T
F T T
F F F

XOR
s t s ⊕ t

T T F
T F T
F T T
F F F

NOT
s s ⊕ t

T F
F T

3. Equivalence of logical statements. We say that two symbolic compound statements are
equivalent if they are true in exactly the same cases.

4. Distributive Law. The statements

w ∧ (u ∨ v)

and

(w ∧ u) ∨ (w ∧ v)

are equivalent.

5. DeMorgan’s Laws. DeMorgan’s Laws say that ¬(p ∨ q) is equivalent to ¬p ∧ ¬q, and that
¬(p ∧ q) is equivalent to ¬p ∨ ¬q.

6. Implication. The following four English phrases are equivalent:

• s implies t,

• if s then t,

• t if s, and

• s only if t.

7. Truth tables for implies and if and only if.

IMPLIES
s t s ⇒ t

T T T
T F F
F T T
F F T

IF AND ONLY IF
s t s ⇔ t

T T T
T F F
F T F
F F T

8. Principle of the Excluded Middle. A statement is true exactly when it is not false.
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Problems

1. Give truth tables for the following expressions:

a. (s ∨ t) ∧ (¬s ∨ t) ∧ (s ∨ ¬t)

b. (s ⇒ t) ∧ (t ⇒ u)

c. (s ∨ t ∨ u) ∧ (s ∨ ¬t ∨ u)

2. Find at least two more examples of the use of some word or phrase equivalent to “implies”
in lemmas, theorems, or corollaries in Chapters One or Two.

3. Find at least two more examples of the use of the phrase “if and only if” in lemmas,
theorems, and corollaries in Chapters One or Two.

4. Show that the statements s ⇒ t and ¬s ∨ t are equivalent.

5. Prove the DeMorgan law which states ¬(p ∧ q) = ¬p ∨ ¬q.

6. Show that p ⊕ q is equivalent to (p ∧ ¬q) ∨ (¬p ∧ q).

7. Give a simplified form of each of the following expressions (using T to stand for a statement
that is always true and F to stand for a statement that is always false)3:

• s ∨ s,

• s ∧ s,

• s ∨ ¬s,

• s ∧ ¬s.

8. Use a truth table to show that (s∨t)∧(u∨v) is equivalent to (s∧u)∨(s∧v)∨(t∧u)∨(t∧v).
What algebraic rule is this similar to?

9. Use DeMorgan’s Law, the distributive law, and Problems 7 and 8 to show that ¬((s ∨ t) ∧
(s ∨ ¬t)) is equivalent to ¬s.

10. Give an example in English where “or” seems to you to mean exclusive or (or where you
think it would for many people) and an example in English where “or” seems to you to
mean inclusive or (or where you think it would for many people).

11. Give an example in English where “if . . . then” seems to you to mean “if and only if” (or
where you think it would to many people) and an example in English where it seems to
you not to mean “if and only if” (or where you think it would not to many people).

12. Find a statement involving only ∧, ∨ and ¬ (and s and t) equivalent to s ⇔ t. Does your
statement have as few symbols as possible? If you think it doesn’t, try to find one with
fewer symbols.

13. Suppose that for each line of a 2-variable truth table, you are told whether the final column
in that line should evaluate to true or to false. (For example, you might be told that the
final column should contain T, F, T, and F in that order.) Explain how to create a logical
statement using the symbols s, t, ∧, ∨, and ¬ that has that pattern as its final column.
Can you extend this procedure to an arbitrary number of variables?

3A statement that is always true is called a tautology; a statement that is always false is called a contradiction
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14. In Problem 13, your solution may have used ∧, ∨ and ¬. Is it possible to give a solution
using only one of those symbols? Is it possible to give a solution using only two of these
symbols?

15. We proved that ∧ distributes over ∨ in the sense of giving two equivalent statements that
represent the two “sides” of the distributive law. For each question below, explain why
your answer is true.

a. Does ∨ distribute over ∧?

b. Does ∨ distribute over ⊕?

c. Does ∧ distribute over ⊕?
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3.2 Variables and Quantifiers

Variables and universes

Statements we use in computer languages to control loops or conditionals are statements about
variables. When we declare these variables, we give the computer information about their possible
values. For example, in some programming languages we may declare a variable to be a “boolean”
or an “integer” or a “real.”4 In English and in mathematics, we also make statements about
variables, but it is not always clear which words are being used as variables and what values
these variables may take on. We use the phrase varies over to describe the set of values a
variable may take on. For example, in English, we might say “If someone’s umbrella is up, then
it must be raining.” In this case, the word “someone” is a variable, and presumably it varies
over the people who happen to be in a given place at a given time. In mathematics, we might
say “For every pair of positive integers m and n, there are nonnegative integers q and r with
0 ≤ r < n such that m = nq + r.” In this case m, n, q, and r are clearly our variables; our
statement itself suggests that two of our variables range over the positive integers and two range
over the nonnegative integers. We call the set of possible values for a variable the universe of
that variable.

In the statement “m is an even integer,” it is clear that m is a variable, but the universe is
not given. It might be the integers, just the even integers, or the rational numbers, or one of
many other sets. The choice of the universe is crucial for determining the truth or falsity of a
statement. If we choose the set of integers as the universe for m, then the statement is true for
some integers and false for others. On the other hand, if we choose integer multiples of 10 as our
universe, then the statement is always true. In the same way, when we control a while loop with
a statement such as “i < j” there are some values of i and j for which the statement is true and
some for which it is false. In statements like “m is an even integer” and “i < j” our variables
are not constrained and so are called free variables. For each possible value of a free variable,
we have a new statement, which might be either true or false, determined by substituting the
possible value for the variable. The truth value of the statement is determined only after such a
substitution.

Exercise 3.2-1 For what values of m is the statement m2 > m a true statement and for
what values is it a false statement? Since we have not specified a universe, your
answer will depend on what universe you choose to use.

If you used the universe of positive integers, the statement is true for every value of m but
1; if you used the real numbers, the statement is true for every value of m except for those in
the closed interval [0, 1]. There are really two points to make here. First, a statement about a
variable can often be interpreted as a statement about more than one universe, and so to make
it unambiguous, the universe must be clearly stated. Second, a statement about a variable can
be true for some values of a variable and false for others.

4Note that to declare a variable x as an integer in, say, a C program does not mean that same thing as saying
that x is an integer. In a C program, an integer may really be a 32-bit integer, and so it is limited to values
between 231 − 1 and −231. Similarly a real has some fixed precision, and hence a real variable y may not be able
to take on a value of, say, 10−985.
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Quantifiers

In contrast, the statement
For every integer m, m2 > m. (3.1)

is false; we do not need to qualify our answer by saying that it is true some of the time and false
at other times. To determine whether Statement 3.1 is true or false, we could substitute various
values for m into the simpler statement m2 > m, and decide, for each of these values, whether
the statement m2 > m is true or false. Doing so, we see that the statement m2 > m is true for
values such as m = −3 or m = 9, but false for m = 0 or m = 1. Thus it is not the case that
for every integer m, m2 > m, so Statement 3.1 is false. It is false as a statement because it is
an assertion that the simpler statement m2 > m holds for each integer value of m we substitute
in. A phrase like “for every integer m” that converts a symbolic statement about potentially
any member of our universe into a statement about the universe instead is called a quantifier. A
quantifier that asserts a statement about a variable is true for every value of the variable in its
universe is called a universal quantifier.

The previous example illustrates a very important point.

If a statement asserts something for every value of a variable, then to show the
statement is false, we need only give one value of the variable for which the assertion
is untrue.

Another example of a quantifier is the phrase “There is an integer m” in the sentence

There is an integer m such that m2 > m.

This statement is also about the universe of integers, and as such it is true—there are plenty
of integers m we can substitute into the symbolic statement m2 > m to make it true. This is an
example of an “existential quantifier.” An existential quantifier asserts that a certain element of
our universe exists. A second important point similar to the one we made above is:

To show that a statement with an existential quantifier is true, we need only exhibit
one value of the variable being quantified that makes the statement true.

As the more complex statement

For every pair of positive integers m and n, there are nonnegative integers q and r
with 0 ≤ r < n such that m = qn + r,

shows, statements of mathematical interest abound with quantifiers. Recall the following defini-
tion of the “big-O” notation you have probably used in earlier computer science courses:

Definition 3.2 We say that f(x) = O(g(x)) if there are positive numbers c and n0 such that
f(x) ≤ cg(x) for every x > n0.

Exercise 3.2-2 Quantification is present in our everyday language as well. The sentences
“Every child wants a pony” and “No child wants a toothache” are two different
examples of quantified sentences. Give ten examples of everyday sentences that use
quantifiers, but use different words to indicate the quantification.
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Exercise 3.2-3 Convert the sentence “No child wants a toothache” into a sentence of the
form “It is not the case that...” Find an existential quantifier in your sentence.

Exercise 3.2-4 What would you have to do to show that a statement about one variable
with an existential quantifier is false? Correspondingly, what would you have to do
to show that a statement about one variable with a universal quantifier is true?

As Exercise 3.2-2 points out, English has many different ways to express quantifiers. For
example, the sentences, “All hammers are tools”, “Each sandwich is delicious”, “No one in their
right mind would do that”, “Somebody loves me”, and “Yes Virginia, there is a Santa Claus” all
contain quantifiers. For Exercise 3.2-3, we can say “It is not the case that there is a child who
wants a toothache.” Our quantifier is the phrase “there is.”

To show that a statement about one variable with an existential quantifier is false, we have
to show that every element of the universe makes the statement (such as m2 > m) false. Thus
to show that the statement “There is an x in [0, 1] with x2 > x” is false, we have to show that
every x in the interval makes the statement x2 > x false. Similarly, to show that a statement
with a universal quantifier is true, we have to show that the statement being quantified is true for
every member of our universe. We will give more details about how to show a statement about
a variable is true or false for every member of our universe later in this section.

Mathematical statements of theorems, lemmas, and corollaries often have quantifiers. For
example in Lemma 2.5 the phrase “for any” is a quantifier, and in Corollary 2.6 the phrase
“there is” is a quantifier.

Standard notation for quantification

Each of the many variants of language that describe quantification describe one of two situations:

A quantified statement about a variable x asserts either

• that the statement is true for all x in the universe, or

• that there exists an x in the universe that makes the statement true.

All quantified statements have one of these two forms. We use the standard shorthand of ∀ for
the phrase “for all” and the standard shorthand of ∃ for the phrase “there exists.” We also adopt
the convention that we parenthesize the expression that is subject to the quantification. For
example, using Z to stand for the universe of all integers, we write

∀n ∈ Z (n2 ≥ n)

as a shorthand for the statement “For all integers n, n2 ≥ n.” It is perhaps more natural to read
the notation as “For all n in Z, n2 ≥ n,” which is how we recommend reading the symbolism.
We similarly use

∃n ∈ Z(n2 �> n)

to stand for “There exists an n in Z such that n2 �> n.” Notice that in order to cast our symbolic
form of an existence statement into grammatical English we have included the supplementary
word “an” and the supplementary phrase “such that.” People often leave out the “an” as they
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read an existence statement, but rarely leave out the “such that.” Such supplementary language
is not needed with ∀.

As another example, we rewrite the definition of the “Big Oh” notation with these symbols.
We use the letter R to stand for the universe of real numbers, and the symbol R+ to stand for
the universe of positive real numbers.

f = O(g) means that ∃c ∈ R+(∃n0 ∈ R+(∀x ∈ R(x > n0 ⇒ f(x) ≤ cg(x))))

We would read this literally as

f is big Oh of g means that there exists a c in R+ such that there exists an n0 in R+

such that for all x in R, if x > n0, then f(x) ≤ cg(x).

Clearly this has the same meaning (when we translate it into more idiomatic English) as

f is big Oh of g means that there exist a c in R+ and an n0 in R+ such that for all
real numbers x > n0, f(x) ≤ cg(x).

This statement is identical to the definition of “big Oh” that we gave earlier in Definition 3.2,
except for more precision as to what c and n0 actually are.

Exercise 3.2-5 How would you rewrite Euclid’s division theorem, Theorem 2.12 using the
shorthand notation we have introduced for quantifiers? Use Z+ to to stand for the
positive integers and N to stand for the nonnegative integers.

We can rewrite Euclid’s division theorem as

∀m ∈ N(∀n ∈ Z+(∃q ∈ N(∃r ∈ N((r < n) ∧ (m = qn + r))))).

Statements about variables

To talk about statements about variables, we need a notation to use for such statements. For
example, we can use p(n) to stand for the statement n2 > n. Now, we can say that p(4) and
p(−3) are true, while p(1) and p(.5) are false. In effect we are introducing variables that stand
for statements about (other) variables! We typically use symbols like p(n), q(x), etc. to stand
for statements about a variable n or x. Then the statement “For all x in U p(x)” can be written
as ∀x ∈ U(p(x)) and the statement “There exists an n in U such that q(n)” can be written
as ∃n ∈ U(q(n)). Sometimes we have statements about more than one variable; for example,
our definition of “big Oh” notation had the form ∃c(∃n0(∀x(p(c, n0, x)))), where p(c, n0, x) is
(x > n0 ⇒ f(x) ≤ cg(x)). (We have left out mention of the universes for our variables here to
emphasize the form of the statement.)

Exercise 3.2-6 Rewrite Euclid’s division theorem, using the notation above for statements
about variables. Leave out the references to universes so that you can see clearly the
order in which the quantifiers occur.

The form of Euclid’s division theorem is ∀m(∀n(∃q(∃r(p(m, n, q, r))))).
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Rewriting statements to encompass larger universes

It is sometimes useful to rewrite a quantified statement so that the universe is larger, and the
statement itself serves to limit the scope of the universe.

Exercise 3.2-7 Let R to stand for the real numbers and R+ to stand for the positive real
numbers. Consider the following two statements:

a) ∀x ∈ R+(x > 1)

b) ∃x ∈ R+(x > 1)

Rewrite these statements so that the universe is all the real numbers, but the state-
ments say the same thing in everyday English that they did before.

For Exercise 3.2-7, there are potentially many ways to rewrite the statements. Two partic-
ularly simple ways are ∀x ∈ R(x > 0 ⇒ x > 1) and ∃x ∈ R(x > 0 ∧ x > 1). Notice that we
translated one of these statements with “implies” and one with “and.” We can state this rule as
a general theorem:

Theorem 3.2 Let U1 be a universe, and let U2 be another universe with U1 ⊆ U2. Suppose that
q(x) is a statement such that

U1 = {x| q(x) is true}. (3.2)

Then if p(x) is a statement about U2, it may also be interpreted as a statement about U1, and

(a) ∀x ∈ U1(p(x)) is equivalent to ∀x ∈ U2(q(x) ⇒ p(x)).

(b) ∃x ∈ U1(p(x)) is equivalent to ∃x ∈ U2(q(x) ∧ p(x)).

Proof: By Equation 3.2 the statement q(x) must be true for all x ∈ U1 and false for all x in U2

but not U1. To prove part (a) we must show that ∀x ∈ U1(p(x)) is true in exactly the same cases
as the statement ∀x ∈ U2(q(x) ⇒ p(x)). For this purpose, suppose first that ∀x ∈ U1(p(x)) is
true. Then p(x) is true for all x in U1. Therefore, by the truth table for “implies” and our remark
about Equation 3.2, the statement ∀x ∈ U2(q(x) ⇒ p(x)) is true. Now suppose ∀x ∈ U1(p(x)) is
false. Then there exists an x in U1 such that p(x) is false. Then by the truth table for “implies,”
the statement ∀x ∈ U2(q(x) ⇒ p(x)) is false. Thus the statement ∀x ∈ U1(p(x)) is true if and
only if the statement ∀x ∈ U2(q(x) ⇒ p(x)) is true. Therefore the two statements are true in
exactly the same cases. Part (a) of the theorem follows.

Similarly, for Part (b), we observe that if ∃x ∈ U1(p(x)) is true, then for some x′ ∈ U1, p(x′)
is true. For that x′, q(x′) is also true, and hence p(x′)∧ q(x′) is true, so that ∃x ∈ U2(q(x)∧p(x))
is true as well. On the other hand, if ∃x ∈ U1(p(x)) is false, then no x ∈ U1 has p(x) true.
Therefore by the truth table for “and” q(x)∧p(x) won’t be true either. Thus the two statements
in Part (b) are true in exactly the same cases and so are equivalent.
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Proving quantified statements true or false

Exercise 3.2-8 Let R stand for the real numbers and R+ stand for the positive real
numbers. For each of the following statements, say whether it is true or false and
why.

a) ∀x ∈ R+(x > 1)

b) ∃x ∈ R+(x > 1)

c) ∀x ∈ R(∃y ∈ R(y > x))

d) ∀x ∈ R(∀y ∈ R(y > x))

e) ∃x ∈ R(x ≥ 0 ∧ ∀y ∈ R+(y > x))

In Exercise 3.2-8, since .5 is not greater than 1, statement (a) is false. However since 2 > 1,
statement (b) is true. Statement (c) says that for each real number x there is a real number y
bigger than x, which we know is true. Statement (d) says that every y in R is larger than every
x in R, and so it is false. Statement (e) says that there is a nonnegative number x such that
every positive y is larger than x, which is true because x = 0 fills the bill.

We can summarize what we know about the meaning of quantified statements as follows.

Principle 3.2 (The meaning of quantified statements)

• The statement ∃x ∈ U(p(x)) is true if there is at least one value of x in U for which the
statement p(x) is true.

• The statement ∃x ∈ U(p(x)) is false if there is no x ∈ U for which p(x) is true.

• The statement ∀x ∈ U(p(x)) is true if p(x) is true for each value of x in U .

• The statement ∀x ∈ U(p(x)) is false if p(x) is false for at least one value of x in U .

Negation of quantified statements

An interesting connection between ∀ and ∃ arises from the negation of statements.

Exercise 3.2-9 What does the statement “It is not the case that for all integers n, n2 > 0”
mean?

From our knowledge of English we see that since the statement ¬∀n ∈ Z(n2 > 0) asserts that it
is not the case that, for all integers n, we have n2 > 0, there must be some integer n such that
n2 �> 0. In other words, it says there is some integer n such that n2 ≤ 0. Thus the negation
of our “for all” statement is a “there exists” statement. We can make this idea more precise by
recalling the notion of equivalence of statements. We have said that two symbolic statements are
equivalent if they are true in exactly the same cases. By considering the case when p(x) is true
for all x ∈ U , (we call this case “always true”) and the case when p(x) is false for at least one
x ∈ U (we call this case “not always true”) we can analyze the equivalence. The theorem that
follows, which formalizes the example above in which p(x) was the statement x2 > 0, is proved
by dividing these cases into two possibilities.
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Theorem 3.3 The statements ¬∀x ∈U(p(x)) and ∃x ∈ U(¬p(x)) are equivalent.

Proof: Consider the following table which we have set up much like a truth table, except
that the relevant cases are not determined by whether p(x) is true or false, but by whether p(x)
is true for all x in the universe U or not.

p(x) ¬p(x) ∀x ∈ U(p(x)) ¬∀x ∈ U(p(x)) ∃x ∈ U(¬p(x))
always true always false true false false

not always true not always false false true true

Since the last two columns are identical, the theorem holds.

Corollary 3.4 The statements ¬∃x ∈ U(q(x)) and ∀x ∈ U(¬q(x)) are equivalent.

Proof: Since the two statements in Theorem 3.3 are equivalent, their negations are also
equivalent. We then substitute ¬q(x) for p(x) to prove the corollary.

Put another way, to negate a quantified statement, you switch the quantifier and “push” the
negation inside.

To deal with the negation of more complicated statements, we simply take them one quantifier
at a time. Recall Definition 3.2, the definition of big Oh notation,

f(x) = O(g(x)) if ∃c ∈ R+(∃n0 ∈ R+(∀x ∈ R(x > n0 ⇒ f(x) ≤ cg(x)))).

What does it mean to say that f(x) is not O(g(x))? First we can write

f(x) �= O(g(x)) if ¬∃c ∈ R+(∃n0 ∈ R+(∀x ∈ R(x > n0 ⇒ f(x) ≤ cg(x)))).

After one application of Corollary 3.4 we get

f(x) �= O(g(x)) if ∀c ∈ R+(¬∃n0 ∈ R+(∀x ∈ R(x > n0 ⇒ f(x) ≤ cg(x)))).

After another application of Corollary 3.4 we obtain

f(x) �= O(g(x)) if ∀c ∈ R+(∀n0 ∈ R+(¬∀x ∈ R(x > n0 ⇒ f(x) ≤ cg(x)))).

Now we apply Theorem 3.3 and obtain

f(x) �= O(g(x)) if ∀c ∈ R+(∀n0 ∈ R+(∃x ∈ R(¬(x > n0 ⇒ f(x) ≤ cg(x))))).

Now ¬(p ⇒ q) is equivalent to p ∧ ¬q, so we can write

f(x) �= O(g(x)) if ∀c ∈ R+(∀n0 ∈ R+(∃x ∈ R((x > n0) ∧ (f(x) �≤ cg(x)))))).

Thus f(x) is not O(g(x)) if for every c in R+ and every n0 in R+, there is an x such that
x > n0 and f(x) �≤ cg(x).

In our next exercise, we use the “Big Theta” notation defined as follows:



3.2. VARIABLES AND QUANTIFIERS 101

Definition 3.3 f(x) = Θ(g(x)) means that f(x) = O(g(x)) and g(x) = O(f(x)).

Exercise 3.2-10 Express ¬(f(x) = Θ(g(x))) in terms similar to those we used to describe
f(x) �= O(g(x)).

Exercise 3.2-11 Suppose the universe for a statement p(x) is the integers from 1 to 10.
Express the statement ∀x(p(x)) without any quantifiers. Express the negation in
terms of ¬p without any quantifiers. Discuss how negation of “for all” and “there
exists” statements corresponds to DeMorgan’s Law.

By DeMorgan’s law, ¬(f = Θ(g)) means ¬(f = O(g)) ∨ ¬(g = O(f)). Thus ¬(f = Θ(g)) means
that either for every c and n0 in R+ there is an x in R with x > n0 and f(x) �< cg(x) or for every
c and n0 in R+ there is an x in R with x > n0 and g(x) < cf(x) (or both).

For Exercise 3.2-11 we see that ∀x(p(x)) is simply

p(1) ∧ p(2) ∧ p(3) ∧ p(4) ∧ p(5) ∧ p(6) ∧ p(7) ∧ p(8) ∧ p(9) ∧ p(10).

By DeMorgan’s law the negation of this statement is

¬p(1) ∨ ¬p(2) ∨ ¬p(3) ∨ ¬p(4) ∨ ¬p(5) ∨ ¬p(6) ∨ ¬p(7) ∨ ¬p(8) ∨ ¬p(9) ∨ ¬p(10).

Thus the relationship that negation gives between “for all” and “there exists” statements is the
extension of DeMorgan’s law from a finite number of statements to potentially infinitely many
statements about a potentially infinite universe.

Implicit quantification

Exercise 3.2-12 Are there any quantifiers in the statement “The sum of even integers is
even?”

It is an elementary fact about numbers that the sum of even integers is even. Another way
to say this is that if m and n are even, then m + n is even. If p(n) stands for the statement “n
is even,” then this last sentence translates to p(m) ∧ p(n) ⇒ p(m + n). From the logical form of
the statement, we see that our variables are free, so we could substitute various integers in for
m and n to see whether the statement is true. But in Exercise 3.2-12, we said we were stating a
more general fact about the integers. What we meant to say is that for every pair of integers m
and n, if m and n are even, then m + n is even. In symbols, using p(k) for “k is even,” we have

∀m ∈ Z(∀n ∈ Z(p(m) ∧ p(n) ⇒ p(m + n))).

This way of representing the statement captures the meaning we originally intended. This is one
of the reasons that mathematical statements and their proofs sometimes seem confusing—just as
in English, sentences in mathematics have to be interpreted in context. Since mathematics has
to be written in some natural language, and since context is used to remove ambiguity in natural
language, so must context be used to remove ambiguity from mathematical statements made in
natural language. In fact, we frequently rely on context in writing mathematical statements with
implicit quantifiers because, in context, it makes the statements easier to read. For example, in
Lemma 2.8 we said
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The equation
a ·n x = 1

has a solution in Zn if and only if there exist integers x and y such that

ax + ny = 1.

In context it was clear that the a we were talking about was an arbitrary member of Zn. It would
simply have made the statement read more clumsily if we had said

For every a ∈ Zn, the equation
a ·n x = 1

has a solution in Zn if and only if there exist integers x and y such that

ax + ny = 1.

On the other hand, we were making a transition from talking about Zn to talking about the
integers, so it was important for us to include the quantified statement “there exist integers x
and y such that ax+ny = 1.” More recently in Theorem 3.3, we also did not feel it was necessary
to say “For all universes U and for all statements p about U ,” at the beginning of the theorem.
We felt the theorem would be easier to read if we kept those quantifiers implicit and let the reader
(not necessarily consciously) infer them from context.

Proof of quantified statements

We said that “the sum of even integers is even” is an elementary fact about numbers. How do
we know it is a fact? One answer is that we know it because our teachers told us so. (And
presumably they knew it because their teachers told them so.) But someone had to figure it out
in the first place, and so we ask how we would prove this statement? A mathematician asked to
give a proof that the sum of even numbers is even might write

If m and n are even, then m = 2i and n = 2j so that

m + n = 2i + 2j = 2(i + j)

and thus m + n is even.

Because mathematicians think and write in natural language, they will often rely on context
to remove ambiguities. For example, there are no quantifiers in the proof above. However the
sentence, while technically incomplete as a proof, captures the essence of why the sum of two
even numbers is even. A typical complete (but more formal and wordy than usual) proof might
go like this.

Let m and n be integers. Suppose m and n are even. If m and n are even, then by
definition there are integers i and j such that m = 2i and n = 2j. Thus there are
integers i and j such that m = 2i and n = 2j. Then

m + n = 2i + 2j = 2(i + j),

so by definition m + n is an even integer. We have shown that if m and n are even,
then m + n is even. Therefore for every m and n, if m and n are even integers, then
so is m + n.
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We began our proof by assuming that m and n are integers. This gives us symbolic notation for
talking about two integers. We then appealed to the definition of an even integer, namely that
an integer h is even if there is another integer k so that h = 2k. (Note the use of a quantifier
in the definition.) Then we used algebra to show that m + n is also two times another number.
Since this is the definition of m + n being even, we concluded that m + n is even. This allowed
us to say that if m and n are even, the m + n is even. Then we asserted that for every pair of
integers m and n, if m and n are even, then m + n is even.

There are a number of principles of proof illustrated here. The next section will be devoted to
a discussion of principles we use in constructing proofs. For now, let us conclude with a remark
about the limitations of logic. How did we know that we wanted to write the symbolic equation

m + n = 2i + 2j = 2(i + j)?

It was not logic that told us to do this, but intuition and experience.

Important Concepts, Formulas, and Theorems

1. Varies over. We use the phrase varies over to describe the set of values a variable may take
on.

2. Universe. We call the set of possible values for a variable the universe of that variable.

3. Free variables. Variables that are not constrained in any way whatever are called free
variables.

4. Quantifier. A phrase that converts a symbolic statement about potentially any member of
our universe into a statement about the universe instead is called a quantifier. There are
two types of quantifiers:

• Universal quantifier. A quantifier that asserts a statement about a variable is true for
every value of the variable in its universe is called a universal quantifier.

• Existential quantifier. A quantifier that asserts a statement about a variable is true
for at least one value of the variable in its universe is called an existential quantifier.

5. Larger universes. Let U1 be a universe, and let U2 be another universe with U1 ⊆ U2.
Suppose that q(x) is a statement such that

U1 = {x| q(x) is true}.

Then if p(x) is a statement about U2, it may also be interpreted as a statement about U1,
and

(a) ∀x ∈ U1(p(x)) is equivalent to ∀x ∈ U2(q(x) ⇒ p(x)).

(b) ∃x ∈ U1(p(x)) is equivalent to ∃x ∈ U2(q(x) ∧ p(x)).

6. Proving quantified statements true or false.

• The statement ∃x ∈ U(p(x)) is true if there is at least one value of x in U for which
the statement p(x) is true.
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• The statement ∃x ∈ U(p(x)) is false if there is no x ∈ U for which p(x) is true.

• The statement ∀x ∈ U(p(x)) is true if p(x) is true for each value of x in U .

• The statement ∀x ∈ U(p(x)) is false if p(x) is false for at least one value of x in U .

7. Negation of quantified statements. To negate a quantified statement, you switch the quan-
tifier and push the negation inside.

• The statements ¬∀x ∈U(p(x)) and ∃x ∈ U(¬p(x)) are equivalent.

• The statements ¬∃x ∈U(p(x)) and ∀x ∈ U(¬p(x)) are equivalent.

8. Big-Oh We say that f(x) = O(g(x)) if there are positive numbers c and n0 such that
f(x) ≤ cg(x) for every x > n0.

9. Big-Theta. f(x) = Θ(g(x)) means that f = O(g(x)) and g = O(f(x)).

10. Some notation for sets of numbers. We use R to stand for the real numbers, R+ to stand
for the positive real numbers, Z to stand for the integers (positive, negative, and zero), Z+

to stand for the positive integers, and N to stand for the nonnegative integers.

Problems

1. For what positive integers x is the statement (x − 2)2 + 1 ≤ 2 true? For what integers
is it true? For what real numbers is it true? If we expand the universe for which we
are considering a statement about a variable, does this always increase the size of the
statement’s truth set?

2. Is the statement “There is an integer greater than 2 such that (x − 2)2 + 1 ≤ 2” true or
false? How do you know?

3. Write the statement that the square of every real number is greater than or equal to zero
as a quantified statement about the universe of real numbers. You may use R to stand for
the universe of real numbers.

4. The definition of a prime number is that it is an integer greater than 1 whose only positive
integer factors are itself and 1. Find two ways to write this definition so that all quantifiers
are explicit. (It may be convenient to introduce a variable to stand for the number and
perhaps a variable or some variables for its factors.)

5. Write down the definition of a greatest common divisor of m and n in such a way that
all quantifiers are explicit and expressed explicitly as “for all” or “there exists.” Write
down Euclid’s extended greatest common divisor theorem that relates the greatest common
divisor of m and n algebraically to m and n. Again make sure all quantifiers are explicit
and expressed explicitly as “for all” or “there exists.”

6. What is the form of the definition of a greatest common divisor, using s(x, y, z) to be the
statement x = yz and t(x, y) to be the statement x < y? (You need not include references
to the universes for the variables.)

7. Which of the following statements (in which Z+ stands for the positive integers and Z
stands for all integers) is true and which is false, and why?
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(a) ∀z ∈ Z+(z2 + 6z + 10 > 20).

(b) ∀z ∈ Z(z2 − z ≥ 0).

(c) ∃z ∈ Z+(z − z2 > 0).

(d) ∃z ∈ Z(z2 − z = 6).

8. Are there any (implicit) quantifiers in the statement “The product of odd integers is odd?”
If so, what are they?

9. Rewrite the statement “The product of odd integers is odd,” with all quantifiers (including
any in the definition of odd integers) explicitly stated as “for all” or “there exist.”

10. Rewrite the following statement without any negations. It is not the case that there exists
an integer n such that n > 0 and for all integers m > n, for every polynomial equation
p(x) = 0 of degree m there are no real numbers for solutions.

11. Consider the following slight modification of Theorem 3.2. For each part below, either
prove that it is true or give a counterexample.

Let U1 be a universe, and let U2 be another universe with U1 ⊆ U2. Suppose that q(x) is a
statement such that U1 = {x| q(x) is true}.

(a) ∀x ∈ U1(p(x)) is equivalent to ∀x ∈ U2(q(x) ∧ p(x)).

(b) ∃x ∈ U1(p(x)) is equivalent to ∃x ∈ U2(q(x) ⇒ p(x)).

12. Let p(x) stand for “x is a prime,” q(x) for “x is even,” and r(x, y) stand for “x = y.” Write
down the statement “There is one and only one even prime,” using these three symbolic
statements and appropriate logical notation. (Use the set of integers for your universe.)

13. Each expression below represents a statement about the integers. Using p(x) for “x is
prime,” q(x, y) for “x = y2,” r(x, y) for “x ≤ y,” s(x, y, z) for “z = xy,” and t(x, y) for
“x = y,” determine which expressions represent true statements and which represent false
statements.

(a) ∀x ∈ Z(∃y ∈ Z(q(x, y) ∨ p(x)))

(b) ∀x ∈ Z(∀y ∈ Z(s(x, x, y) ⇔ q(x, y)))

(c) ∀y ∈ Z(∃x ∈ Z(q(y, x)))

(d) ∃z ∈ Z(∃x ∈ Z(∃y ∈ Z(p(x) ∧ p(y) ∧ ¬t(x, y)))

14. Find a reason why (∃x ∈ U(p(x)))∧(∃y ∈ U(q(y))) is not equivalent to ∃z ∈ U(p(z)∨q(z)).
Are the statements (∃x ∈ U(p(x))) ∨ (∃y ∈ U(q(y))) and ∃z ∈ U(p(z) ∨ q(z)) equivalent?

15. Give an example (in English) of a statement that has the form ∀x ∈ U(∃y ∈ V (p(x, y))).
(The statement can be a mathematical statement or a statement about “everyday life,” or
whatever you prefer.) Now write in English the statement using the same p(x, y) but of the
form ∃y ∈ V (∀x ∈ U(p(x, y))). Comment on whether “for all” and “there exist” commute.
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3.3 Inference

Direct Inference (Modus Ponens) and Proofs

We concluded our last section with a proof that the sum of two even numbers is even. That
proof contained several crucial ingredients. First, we introduced symbols for members of the
universe of integers. In other words, rather than saying “suppose we have two integers,” we
introduced symbols for the two members of our universe we assumed we had. How did we know
to use algebraic symbols? There are many possible answers to this question, but in this case our
intuition was probably based on thinking about what an even number is, and realizing that the
definition itself is essentially symbolic. (You may argue that an even number is just twice another
number, and you would be right. Apparently no symbols are in that definition. But they really
are there; they are the phrases “even number” and “another number.” Since we all know algebra
is easier with symbolic variables rather than words, we should recognize that it makes sense to
use algebraic notation.) Thus this decision was based on experience, not logic.

Next we assumed the two integers were even. We then used the definition of even numbers,
and, as our previous parenthetic comment suggests, it was natural to use the definition symbol-
ically. The definition tells us that if m is an even number, then there exists another integer i
such that m = 2i. We combined this with the assumption that m is even to conclude that in
fact there does exist an integer i such that m = 2i. This is an example of using the principle of
direct inference (called modus ponens in Latin).

Principle 3.3 (Direct inference) From p and p ⇒ q we may conclude q.

This common-sense principle is a cornerstone of logical arguments. But why is it true? In Table
3.5 we take another look at the truth table for implication.

Table 3.5: Another look at implication

p q p ⇒ q

T T T
T F F
F T T
F F T

The only line which has a T in both the p column and the p ⇒ q column is the first line. In
this line q is true also, and we therefore conclude that if p and p ⇒ q hold then q must hold also.
While this may seem like a somewhat “inside out” application of the truth table, it is simply a
different way of using a truth table.

There are quite a few rules (called rules of inference) like the principle of direct inference that
people commonly use in proofs without explicitly stating them. Before beginning a formal study
of rules of inference, we complete our analysis of which rules we used in the proof that the sum
of two even integers is even. After concluding that m = 2i and n = 2j, we next used algebra to
show that because m = 2i and n = 2j, there exists a k such that m + n = 2k (our k was i + j).
Next we used the definition of even number again to say that m + n was even. We then used a
rule of inference which says
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Principle 3.4 (Conditional Proof) If, by assuming p, we may prove q, then the statement
p ⇒ q is true.

Using this principle, we reached the conclusion that if m and n are even integers, then m + n
is an even integer. In order to conclude that this statement is true for all integers m and n, we
used another rule of inference, one of the more difficult to describe. We originally introduced
the variables m and n. We used only well-known consequences of the fact that they were in the
universe of integers in our proof. Thus we felt justified in asserting that what we concluded about
m and n is true for any pair of integers. We might say that we were treating m and n as generic
members of our universe. Thus our rule of inference says

Principle 3.5 (Universal Generalization) If we can prove a statement about x by assuming
x is a member of our universe, then we can conclude the statement is true for every member of
our universe.

Perhaps the reason this rule is hard to put into words is that it is not simply a description of a
truth table, but is a principle that we use in order to prove universally quantified statements.

Rules of inference for direct proofs

We have seen the ingredients of a typical proof. What do we mean by a proof in general? A proof
of a statement is a convincing argument that the statement is true. To be more precise about
it, we can agree that a direct proof consists of a sequence of statements, each of which is either a
hypothesis5, a generally accepted fact, or the result of one of the following rules of inference for
compound statements.

Rules of Inference for Direct Proofs

1) From an example x that does not satisfy p(x), we may conclude ¬p(x).

2) From p(x) and q(x), we may conclude p(x) ∧ q(x).

3) From either p(x) or q(x), we may conclude p(x) ∨ q(x).

4) From either q(x) or ¬p(x) we may conclude p(x) ⇒ q(x).

5) From p(x) ⇒ q(x) and q(x) ⇒ p(x) we may conclude p(x) ⇔ q(x).

6) From p(x) and p(x) ⇒ q(x) we may conclude q(x).

7) From p(x) ⇒ q(x) and q(x) ⇒ r(x) we may conclude p(x) ⇒ r(x).

8) If we can derive q(x) from the hypothesis that x satisfies p(x), then we may conclude
p(x) ⇒ q(x).

9) If we can derive p(x) from the hypothesis that x is a (generic) member of our universe U ,
we may conclude ∀x ∈ U(p(x)).

5If we are proving an implication s ⇒ t, we call s a hypothesis. If we make assumptions by saying “Let
. . . ,” “Suppose . . . ,” or something similar before we give the statement to be proved, then these assumptions are
hypotheses as well.
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10) From an example of an x ∈ U satisfying p(x) we may conclude ∃x ∈ U(p(x)).

The first rule is a statement of the principle of the excluded middle as it applies to statements
about variables. The next four four rules are in effect a description of the truth tables for “and,”
“or,” “implies” and “if and only if.” Rule 5 says what we must do in order to write a proof of
an “if and only if” statement. Rule 6, exemplified in our earlier discussion, is the principle of
direct inference, and describes one row of the truth table for p ⇒ q. Rule 7 is the transitive law,
one we could derive by truth table analysis. Rule 8, the principle of conditional proof, which is
also exemplified earlier, may be regarded as yet another description of one row of the truth table
of p ⇒ q. Rule 9 is the principle of universal generalization, discussed and exemplified earlier.
Rule 10 specifies what we mean by the truth of an existentially quantified statement, according
to Principle 3.2.

Although some of our rules of inference are redundant, they are useful. For example, we could
have written a portion of our proof that the sum of even numbers is even as follows without using
Rule 8.

“Let m and n be integers. If m is even, then there is a k with m = 2k. If n is even,
then there is a j with n = 2j. Thus if m is even and n is even, there are a k and j
such that m + n = 2k + 2j = 2(k + j). Thus if m is even and n is even, there is an
integer h = k + j such that m + n = 2h. Thus if m is even and n is even, m + n is
even.”

This kind of argument could always be used to circumvent the use of Rule 8, so Rule 8 is not
required as a rule of inference, but because it permits us to avoid such unnecessarily complicated
“silliness” in our proofs, we choose to include it. Rule 7, the transitive law, has a similar role.

Exercise 3.3-1 Prove that if m is even, then m2 is even. Explain which steps of the proof
use one of the rules of inference above.

For Exercise 3.3-1, we can mimic the proof that the sum of even integers is even.

Let m be integer. Suppose that m is even. If m is even, then there is a k with m = 2k.
Thus, there is a k such that m2 = 4k2. Therefore, there is an integer h = 2k2 such
that m2 = 2h. Thus if m is even, m2 is even. Therefore, for all integers m, if m is
even, then m2 is even.

In our first sentence we are setting things up to use Rule 9. In the second sentence we are simply
stating an implicit hypothesis. In the next two sentences we use Rule 6, the principle of direct
inference. When we said “Therefore, there is an integer h = 2k2 such that m2 = 2h,” we were
simply stating an algebraic fact. In our next sentence we used Rule 8. Finally, we used Rule 9.
You might have written the proof in a different way and used different rules of inference.

Contrapositive rule of inference.

Exercise 3.3-2 Show that “p implies q” is equivalent to “¬q implies ¬p.”
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Exercise 3.3-3 Is “p implies q” equivalent to “q implies p?”

To do Exercise 3.3-2, we construct the double truth table in Table 3.6. Since the columns
under p ⇒ q and under ¬q ⇒ ¬p are exactly the same, we know the two statements are equivalent.
This exercise tells us that if we know that ¬q ⇒ ¬p, then we can conclude that p ⇒ q. This is

Table 3.6: A double truth table for p ⇒ q and ¬q ⇒ ¬p.

p q p ⇒ q ¬p ¬q ¬q ⇒ ¬p

T T T F F T
T F F F T F
F T T T F T
F F T T T T

called the principle of proof by contraposition.

Principle 3.6 (Proof by Contraposition) The statement p ⇒ q and the statement ¬q ⇒ ¬p
are equivalent, and so a proof of one is a proof of the other.

The statement ¬q ⇒ ¬p is called the contrapositive of the statement p ⇒ q. The following
example demonstrates the utility of the principle of proof by contraposition.

Lemma 3.5 If n is a positive integer with n2 > 100, then n > 10.

Proof: Suppose n is not greater than 10. (Now we use the rule of algebra for inequalities which
says that if x ≤ y and c ≥ 0, then cx ≤ cy.) Then since 1 ≤ n ≤ 10,

n · n ≤ n · 10 ≤ 10 · 10 = 100.

Thus n2 is not greater than 100. Therefore, if n is not greater than 10, n2 is not greater than
100. Then, by the principle of proof by contraposition, if n2 > 100, n must be greater than 10.

We adopt Principle 3.6 as a rule of inference, called the contrapositive rule of inference.

11) From ¬q(x) ⇒ ¬p(x) we may conclude p(x) ⇒ q(x).

In our proof of the Chinese Remainder Theorem, Theorem 2.24, we wanted to prove that for a
certain function f that if x and y were different integers between 0 and mn−1, then f(x) �= f(y).
To prove this we assumed that in fact f(x) = f(y) and proved that x and y were not different
integers between 0 and mn − 1. Had we known the principle of contrapositive inference, we
could have concluded then and there that f was one-to-one. Instead, we used the more common
principle of proof by contradiction, the major topic of the remainder of this section, to complete
our proof. If you look back at the proof, you will see that we might have been able to shorten it
by a sentence by using contrapositive inference.

For Exercise 3.3-3, a quick look at the double truth table for p ⇒ q and q ⇒ p in Table 3.7
demonstrates that these two statements are not equivalent. The statement q ⇒ p is called the
converse of p ⇒ q. Notice that p ⇔ q is true exactly when p ⇒ q and its converse are true. It
is surprising how often people, even professional mathematicians, absent-mindedly try to prove
the converse of a statement when they mean to prove the statement itself. Try not to join this
crowd!
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Table 3.7: A double truth table for p ⇒ q and q ⇒ p.

p q p ⇒ q q ⇒ p

T T T T
T F F T
F T T F
F F T T

Proof by contradiction

Proof by contrapositive inference is an example of what we call indirect proof. We have actually
seen another example indirect proof, the principle of proof by contradiction. In our proof of
Corollary 2.6 we introduced the principle of proof by contradiction, Principle 2.1. We were
trying to prove the statement

Suppose there is a b in Zn such that the equation

a ·n x = b

does not have a solution. Then a does not have a multiplicative inverse in Zn.

We assumed that the hypothesis that a ·n x = b does not have a solution was true. We also
assumed that the conclusion that a does not have a multiplicative inverse was false. We showed
that these two assumptions together led to a contradiction. Then, using the principle of the
excluded middle, Principle 3.1 (without saying so), we concluded that if the hypothesis is in fact
true, then the only possibility was that the conclusion is true as well.

We used the principle again later in our proof of Euclid’s Division Theorem. Recall that in
that proof we began by assuming that the theorem was false. We then chose among the pairs
of integers (m, n) such that m �= qn + r with 0 ≤ r < n a pair with the smallest possible m.
We then made some computations by which we proved that in this case there are a q and r with
0 ≤ r < n such that m = qn + r. Thus we started out by assuming the theorem was false, and
from that assumption we drew drew a contradiction to the assumption. Since all our reasoning,
except for the assumption that the theorem was false, used accepted rules of inference, the only
source of that contradiction was our assumption. Thus, by the principle of the excluded middle,
our assumption had to be incorrect. We adopt the principle of proof by contradiction (also called
the principle of reduction to absurdity) as our last rule of inference.

12) If from assuming p(x) and ¬q(x), we can derive both r(x) and ¬r(x) for some statement
r(x), then we may conclude p(x) ⇒ q(x).

There can be many variations of proof by contradiction. For example, we may assume p is
true and q is false, and from this derive the contradiction that p is false, as in the following
example.

Prove that if x2 + x − 2 = 0, then x �= 0.

Proof: Suppose that x2 + x − 2 = 0. Assume that x = 0. Then x2 + x − 2 =
0 + 0 − 2 = −2. This contradicts x2 + x − 2 = 0. Thus (by the principle of proof by
contradiction), if x2 + x − 2 = 0, then x �= 0.
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Here the statement r was identical to p, namely x2 + x − 2 = 0.

On the other hand, we may instead assume p is true and q is false, and derive a contradiction
of a known fact, as in the following example.

Prove that if x2 + x − 2 = 0, then x �= 0.

Proof: Suppose that x2 + x − 2 = 0. Assume that x = 0. Then x2 + x − 2 =
0 + 0 − 2 = −2. Thus 0 = −2, a contradiction. Thus (by the principle of proof by
contradiction), if x2 + x − 2 = 0, then x �= 0.

Here the statement r is the known fact that 0 �= −2.

Sometimes the statement r that appears in the principle of proof by contradiction is simply
a statement that arises naturally as we are trying to construct our proof, as in the following
example.

Prove that if x2 + x − 2 = 0, then x �= 0.

Proof: Suppose that x2 + x − 2 = 0. Then x2 + x = 2. Assume that x = 0. Then
x2 + x = 0 + 0 = 0. But this is a contradiction (to our observation that x2 + x = 2).
Thus (by the principle of proof by contradiction), if x2 + x − 2 = 0, then x �= 0.

Here the statement r is “x2 + x = 2.”

Finally, if proof by contradiction seems to you not to be much different from proof by con-
traposition, you are right, as the example that follows shows.

Prove that if x2 + x − 2 = 0, then x �= 0.

Proof: Assume that x = 0. Then x2+x−2 = 0+0−2 = −2, so that x2+x−2 �= 0.
Thus (by the principle of proof by contraposition), if x2 + x − 2 = 0, then x �= 0.

Any proof that uses one of the indirect methods of inference is called an indirect proof. The last
four examples illustrate the rich possibilities that indirect proof provides us. Of course they also
illustrate why indirect proof can be confusing. There is no set formula that we use in writing a
proof by contradiction, so there is no rule we can memorize in order to formulate indirect proofs.
Instead, we have to ask ourselves whether assuming the opposite of what we are trying to prove
gives us insight into why the assumption makes no sense. If it does, we have the basis of an
indirect proof, and the way in which we choose to write it is a matter of personal choice.

Exercise 3.3-4 Without extracting square roots, prove that if n is a positive integer such
that n2 < 9, then n < 3. You may use rules of algebra for dealing with inequalities.

Exercise 3.3-5 Prove that
√

5 is not rational.

To prove the statement in Exercise 3.3-4, we assume, for purposes of contradiction, that n ≥ 3.
Squaring both sides of this equation, we obtain

n2 ≥ 9 ,
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which contradicts our hypothesis that n2 < 9. Therefore, by the principle of proof by contradic-
tion, n < 3.

To prove the statement in Exercise 3.3-5, we assume, for the purpose of contradiction, that
√

5
is rational. This means that it can be expressed as the fraction m

n , where m and n are integers.
Squaring both sides of the equation m

n =
√

5, we obtain

m2

n2
= 5,

or
m2 = 5n2.

Now m2 must have an even number of prime factors (counting each prime factor as many times
as it occurs) as must n2. But 5n2 has an odd number of prime factors. Thus a product of an
even number of prime factors is equal to a product of an odd number of prime factors, which is
a contradiction since each positive integer may be expressed uniquely as a product of (positive)
prime numbers. Thus by the principle of proof by contradiction,

√
5 is not rational.

Important Concepts, Formulas, and Theorems

1. Principle of direct inference or modus ponens. From p and p ⇒ q we may conclude q.

2. Principle of conditional proof. If, by assuming p, we may prove q, then the statement p ⇒ q
is true.

3. Principle of universal generalization. If we can prove a statement about x by assuming x is
a member of our universe, then we can conclude it is true for every member of our universe.

4. Rules of Inference. 12 rules of inference appear in this chapter. They are

1) From an example x that does not satisfy p(x), we may conclude ¬p(x).

2) From p(x) and q(x), we may conclude p(x) ∧ q(x).

3) From either p(x) or q(x), we may conclude p(x) ∨ q(x).

4) From either q(x) or ¬p(x) we may conclude p(x) ⇒ q(x).

5) From p(x) ⇒ q(x) and q(x) ⇒ p(x) we may conclude p(x) ⇔ q(x).

6) From p(x) and p(x) ⇒ q(x) we may conclude q(x).

7) From p(x) ⇒ q(x) and q(x) ⇒ r(x) we may conclude p(x) ⇒ r(x).

8) If we can derive q(x) from the hypothesis that x satisfies p(x), then we may conclude
p(x) ⇒ q(x).

9) If we can derive p(x) from the hypothesis that x is a (generic) member of our universe
U , we may conclude ∀x ∈ U(p(x)).

10) From an example of an x ∈ U satisfying p(x) we may conclude ∃x ∈ U(p(x)).

11) From ¬q(x) ⇒ ¬p(x) we may conclude p(x) ⇒ q(x).

12) If from assuming p(x) and ¬q(x), we can derive both r(x) and ¬r(x) for some statement
r, then we may conclude p(x) ⇒ q(x).
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5. Contrapositive of p ⇒ q. The contrapositive of the statement p ⇒ q is the statement
¬q ⇒ ¬p.

6. Converse of p ⇒ q. The converse of the statement p ⇒ q is the statement q ⇒ p.

7. Contrapositive rule of inference. From ¬q ⇒ ¬p we may conclude p ⇒ q.

8. Principle of proof by contradiction. If from assuming p and ¬q, we can derive both r and
¬r for some statement r, then we may conclude p ⇒ q.

Problems

1. Write down the converse and contrapositive of each of these statements.

(a) If the hose is 60 feet long, then the hose will reach the tomatoes.

(b) George goes for a walk only if Mary goes for a walk.

(c) Pamela recites a poem if Andre asks for a poem.

2. Construct a proof that if m is odd, then m2 is odd.

3. Construct a proof that for all integers m and n, if m is even and n is odd, then m + n is
odd.

4. What do we really mean when we say “prove that if m is odd and n is odd then m + n is
even?” Prove this more precise statement.

5. Prove that for all integers m and n if m is odd and n is odd, then m · n is odd.

6. Is the statement p ⇒ q equivalent to the statement ¬p ⇒ ¬q?

7. Construct a contrapositive proof that for all real numbers x if x2 − 2x �= −1, then x �= 1.

8. Construct a proof by contradiction that for all real numbers x if x2−2x �= −1, then x �= 1.

9. Prove that if x3 > 8, then x > 2.

10. Prove that
√

3 is irrational.

11. Construct a proof that if m is an integer such that m2 is even, then m is even.

12. Prove or disprove the following statement. “For every positive integer n, if n is prime, then
12 and n3 − n2 + n have a common factor.”

13. Prove or disprove the following statement. “For all integers b, c, and d, if x is a rational
number such that x2 + bx + c = d, then x is an integer.” (Hints: Are all the quantifiers
given explicitly? It is ok to use the quadratic formula.)

14. Prove that there is no largest prime number.

15. Prove that if f(x), g(x) and h(x) are functions from R+ to R+ such that f(x) = O(g(x))
and g(x) = O(h(x)), then f(x) = O(h(x)).
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k-element permutation of a set, 13
n choose k, 6
Zn, 46

abstraction, 2
absurdity

reduction to, 110
addition mod n, 46
additive identity, 43
adjacency list, 276
adjacent in a graph, 261, 270
Adleman, 68
adversary, 37, 40, 46
algorithm

non-deterministic, 292, 294
divide and conquer, 137, 146
polynomial time, 292
randomized, 77, 235, 245

alternating cycle for a matching, 300
alternating path, 307
alternating path for a matching, 300
ancestor, 280, 282
and (in logic), 83, 84, 90
associative law, 46
augmentation-cover algorithm, 305
augmenting path, 307
augmenting path for a matching, 302
axioms of probability, 184

base case for a recurrence, 126
base case in proof by induction, 119, 122, 123
Berge’s Theorem (for matchings), 302
Berge’s Theorem for matchings, 307
Bernoulli trials

expected number of successes, 220, 222
variance and standard deviation, 256, 257

Bernoulli trials process, 214, 222
bijection, 12
Bijection Principle, 12
binary tree, 280–282

full, 280, 282
binomial coefficient, 14–15, 18–25
binomial probabilities, 214, 222
Binomial Theorem, 21, 23
bipartite graph, 296, 298, 307
block of a partition, 2, 33
bookcase problem, 31
Boole’s inequality, 230
breadth first number, 277
breadth first search, 277, 281

Caesar cipher, 46
Caeser cipher, 38
ceilings

removing from recurrences, 154, 168, 170
removing from recurrences, 158

child, 280, 282
Chinese Remainder Theorem, 69, 71
cipher

Caeser, 38, 46
ciphertext, 38, 46
Circuit

Eulerian, 286, 294
closed path in a graph, 267, 271
codebook, 40
coefficient

binomial, 15, 18, 21
multinomial, 24
trinomial, 23

collision in hashing, 185, 189
collisions in hashing, 226, 232

expected number of, 226, 232
coloring

proper, 310, 320
coloring of a graph, 310, 320
combinations with repetitions, 34
commutative law, 46
complement, 185, 189
complementary events, 185, 189
complementary probability, 187
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complete bipartite graph, 296
complete graph, 263, 271
component

connected, 266, 271
conclusion (of an implication), 88
conditional connective, 88, 91
conditional expected value, 237, 245
conditional probability, 203, 210
conditional proof

principle of, 112
conditional statements, 88
connected

geometrically, 315
connected component of a graph, 266, 271
connected graph, 265, 271
connective

conditional, 88, 91
logical, 84, 91

connectivity relation, 266
constant coefficient recurrence, 134
contradiction, 92

proof by, 50, 110, 113
contraposition

proof by, 109
contrapositive, 109
contrapositive (of an implication), 113
converse (of an implication), 109, 113
correspondence

one-to-one, 12
counterexample

smallest, 54
counting, 1–36
coupon collector’s problem, 228
cryptography, 37, 45

private key, 38, 46
public key, 40, 46

RSA, 66, 68, 70
cut edge, 316, 321
cut-vertex, 296
cycle, 267

Hamiltonian, 289, 294
cycle in a graph, 267, 271

decision problem, 292, 294
degree, 263, 271
DeMorgan’s Laws, 86, 91
derangement, 197
derangement problem, 197

descendant, 280, 282
diagram

Venn, 192, 193, 199
digital signature, 79
direct inference, 106, 112
direct proof, 107
disjoint, 2, 6

mutually, 6
distribution

probability, 184, 187, 189
distribution function, 217, 222, 249
distributive law, 46
distributive law (and over or), 86
divide and conquer algorithm, 137, 146
divide and conquer recurrence, 148
division in Zn, 51
domain of a function, 10
drawing

planar
of a graph, 314, 320

edge in a graph
multiple, 263

edge of a graph, 261, 270
empty slots in hashing, 226, 232
encrypted, 37
encryption

RSA, 68
equations in Zn

solution of, 59, 60
solutions to, 49

equivalence classes, 28, 33
equivalence relation, 27, 33
equivalent (in logic), 91
equivalent statements, 86, 99
Euclid’s Division Theorem, 46, 54
Euclid’s extended greatest common divisor

algorithm, 56, 57, 59
Euclid’s greatest common divisor algorithm,

55, 59
Euler”s Formula, 316
Euler’s constant, 228, 232
Euler, Leonhard, 285
Eulerian Circuit, 286, 294
Eulerian Graph, 287, 294
Eulerian Tour, 286, 294
Eulerian Trail, 286, 294
event, 183, 189
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events
complementary, 185, 189
independent, 203, 210

excluded middle
principle of, 90, 91

exclusive or, 84
exclusive or (in logic), 83, 84, 90
existential quantifier, 95, 103
expectation, 217, 222

additivity of, 219, 222
conditional, 237, 245
linearity of, 219, 222

expected number of trials until first success,
221, 223

expected running time, 235, 245
expected value, 217, 222

conditional, 237, 245
number of successes in Bernoulli trials,

220, 222
exponentiation in Zn, 63, 70
exponentiation mod n, 63

practical aspects, 73
extended greatest common divisor algorithm,

56, 57, 59
external vertex, 280, 282

face of a planar drawing, 315, 321
factorial

falling, 13
factoring numbers

difficulty of, 75
falling factorial, 13
family of sets, 2
Fermat’s Little Theorem, 65, 70
Fermat’s Little Theorem for integers, 66, 70
first order linear constant coefficient recur-

rence
solution to, 134

first order linear recurrence, 131, 134
solution to, 135

floors
removing from recurrences, 154, 158, 168,

170
forest, 272
fractions in Zn, 47
free variable, 94, 103
full binary tree, 280, 282
function, 10

one-to-one, 11
hash, 185
increasing, 168
inverse, 17
one-way, 66, 68
onto, 11

gcd, 53
generating function, 215, 222
geometric series

bounds on the sum, 134
finite, 129, 134

geometrically connected, 315
graph, 261, 270

bipartite, 296, 298, 307
coloring, 310, 320
complete, 263, 271
complete bipartite, 296
connected, 265, 271

Graph
Eulerian, 287, 294

graph
Hamiltonian, 289, 294
hypercube, 295
interval, 312, 320
interval representation, 312, 320
neighborhood, 299, 307
planar, 314, 320
planar drawing, 314, 320

face of, 315, 321
weighted, 284

graph decision problem, 292, 294
greatest common divisor, 53, 58–60
greatest common divisor algorithm, 55, 59

extended, 56, 57, 59

Hall’s condition (for a matching), 305
Hall’s Theorem for matchings, 306
Hall’s Theorem for matchings., 307
Hamilton, William Rowan, 289
Hamiltonian Cycle, 289, 294
Hamiltonian graph, 289, 294
Hamiltonian Path, 289, 294
hanoi, towers of, 126
harmonic number, 228, 232
hash

function, 185
hash table, 184
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hashing
collision, 185, 189
collisions, 226, 232
empty slots, 226, 232
expected maximum number of keys per

slot, 231, 232
expected number of collisions, 226, 232
expected number of hashes until all slots

occupied, 228, 232
expected number of items per slot, 225,

232
hatcheck problem, 197
histogram, 249
hypercube graph, 295
hypothesis (of an implication), 88

identity
additive, 43
multiplicative, 43

if (in logic), 91
if and only if (in logic), 91
if . . . then (in logic), 91
implies, 91
implies (in logic), 91
incident in a graph, 261, 270
increasing function, 168
independent events, 203, 210
independent random variables, 253, 256

product of, 253, 256
variance of sum, 254, 257

independent set (in a graph), 298, 307
indirect proof, 110, 111
induced subgraph, 267
induction, 115–123, 162–165

base case, 119, 123
inductive conclusion, 119, 124
inductive hypothesis, 119, 124
inductive step, 119, 124
strong, 121, 123
stronger inductive hypothesis, 165
weak, 118, 123

inductive conclusion in proof by induction,
119, 124

inductive hypothesis in proof by induction,
119, 124

inductive step in proof by induction, 119, 124
inference

direct, 106, 112

rule of, 113
rules of, 107, 109, 110, 112

initial condition for recurrence, 134
initial conditon for a recurrence, 126
injection, 11
insertion sort, 235, 236, 245
integers mod n, 46
internal vertex, 280, 282
interval graph, 312, 320
intervalrepresentation of a graph, 312, 320
inverse

multiplicative
in Zn, 49, 51, 53, 58–60
in Zn, computing, 59
in Zp, p prime, 58, 60

inverse function, 17
iteration of a recurrence, 129, 135, 139

key
private, 46

for RSA, 66
public, 40, 46

for RSA, 66
secret, 40

König-Egerváry Theorem, 308
Königsberg Bridge Problem, 285

labeling with two labels, 23
law

associative, 46
commutative, 46
distributive, 46

leaf, 280, 282
length of a path in a graph, 263
lexicographic order, 13, 85
linear congruential random number genera-

tor, 48
list, 10
logarithms

important properties of, 145, 147, 149,
157, 159

logic, 81–113
logical connective, 84, 91
loop in a graph, 263

Master Theorem, 148, 151, 157, 158
matching, 297, 307

alternating cycle, 300
alternating path, 300



INDEX 119

augmenting path, 302
Hall’s condition for, 305
increasing size, 302
maximum, 298, 307

mathematical induction, 115–123, 162–165
base case, 119, 123
inductive conclusion, 119, 124
inductive hypothesis, 119, 124
inductive step, 119, 124
strong, 121, 123
stronger inductive hypothesis, 165
weak, 118, 123

maximum matching, 298, 307
measure

probability, 184, 187, 189
median, 172, 179
mergesort, 138, 146
Miller-Rabin primality testing algorithm, 77
minimum spanning tree, 284
mod n

using in a calculation, 46
modus ponens, 106, 112
multinomial, 24
multinomial coefficient, 24
Multinomial Theorem, 24
multiple edges, 263
multiple edges in a graph, 263
multiplication mod n, 46
multiplicative identity, 43
multiplicative inverse in Zn, 49, 51, 53, 58–60

computing, 59
multiplicative inverse in Zp, p prime, 58, 60
multiset, 30, 33

size of, 30
mutually disjoint sets, 2, 6

negation, 83, 90
neighbor in a graph, 299, 307
neighborhood, 299, 307
non-deterministic algorithm, 294
non-deterministic graph algorithm, 292
not (in logic), 83, 84, 90
NP, problem class, 293
NP-complete, 293, 294
NP-complete Problems, 292
number theory, 38–79

one-to-one function, 11

one-way function, 66, 68
only if (in logic), 91
onto function, 11
or

exclusive (in logic), 83
or (in logic), 83, 84, 90

exclusive, 84
order

lexicographic, 13
ordered pair, 6
overflow, 48

P, problem class, 292, 294
pair

ordered, 6
parent, 280, 282
part of a bipartite graph, 298, 307
partition, 28

blocks of, 2
partition element, 174, 180, 240
partition of a set, 2, 6, 33
Pascal Relationship, 18, 23
Pascal’s Triangle, 18, 23
path, 267

alternating, 307
augmenting, 307
Hamiltonian, 289, 294

path in a graph, 263, 271
closed, 267, 271
length of, 263
simple, 263, 271

percentile, 172, 179
permutation, 12

k-element, 13
permutation of Zp, 65, 70
Pi notation, 32, 34
plaintext, 38, 46
planar drawing, 314, 320
planar drawing face of, 315, 321
planar graph, 314, 320
polynomial time graph algorithm, 292
power

falling factorial, 13
rising factorial, 32

primality testing, 214
deterministic polynomial time, 76
difficulty of, 76
randomized algorithm, 77
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Principle
Symmetry, 33
Bijection, 12
Product, 5, 6

Version 2, 10
Quotient, 28

principle
quotient, 33

Principle
Sum, 2, 6
Symmetry, 26

Principle of conditional proof, 112
Principle of Inclusion and exclusion

for counting, 199, 200
principle of inclusion and exclusion

for probability, 195
Principle of proof by contradiction, 50, 113
principle of the excluded middle, 90, 91
Principle of universal generalization, 112
private key, 46

for RSA, 66
private key cryptography, 38, 46
probability, 184, 189

axioms of, 184
Bernoulli trials, 214, 222

Probability
Bernoulli trials

variance and standard deviation, 256,
257

probability
binomial, 214, 222
complementary, 187
complementary events, 185, 189
conditional, 203, 210
distribution, 184, 187, 189

binomial, 214, 222
event, 183, 189
independence, 203, 210
independent random variables

variance of sum, 254, 257
measure, 184, 187, 189
random variable, 213, 221

distribution function, 217, 222, 249
expectation, 217, 222
expected value, 217, 222
independent, 253, 256
numerical multiple of, 219, 222
standard deviation, 255, 257

variance, 252, 256
random variables

product of, 253, 256
sum of, 218, 222

sample space, 183, 188
uniform, 187, 189
union of events, 192, 194, 195, 199
weight, 184, 189

product notation, 32, 34
Product Principle, 5, 6

Version 2, 10
proof

direct, 107
indirect, 110, 111

proof by contradiction, 50, 110, 113
proof by contraposition, 109
proof by smallest counterexample, 54
proper coloring, 310, 320
pseudoprime, 77
public key, 40, 46

for RSA, 66
public key cryptography, 40, 46

quantified statements
truth or falsity, 99, 103

quantifier, 95, 103
existential, 95, 103
universal, 95, 103

quicksort, 241
quotient principle, 28, 33

random number, 48
random number generator, 235
random variable, 213, 221

distribution function, 217, 222, 249
expectation, 217, 222
expected value, 217, 222
independence, 253, 256
numerical multiple of, 219, 222
standard deviation, 255, 257
variance, 252, 256

random variables
independent

variance of sum, 254, 257
product of, 253, 256
sum of, 218, 222

randomized algorithm, 77, 235, 245
randomized selection algorithm, 240, 245
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range of a function, 10
recurence

iterating, 129, 135
recurrence, 126, 134

base case for, 126
constant coefficient, 134
divide and conquer, 148
first order linear, 131, 134

solution to, 135
first order linear constant coefficient

solution to, 134
initial condition, 126, 134
iteration of, 139

recurrence equation, 126, 134
recurrence inequality, 161

solution to, 161
recurrences on the positive real numbers, 152,

158
recursion tree, 139, 146, 148, 165
reduction to absurdity, 110
register assignment problem, 312
relation

equivalence, 27
relatively prime, 53, 58, 59
removing floors and ceilings from recurrences,

158, 170
removing floors and ceilings in recurrences,

154, 168
rising factorial, 32
Rivest, 68
root, 279, 282
rooted tree, 279, 282
RSA Cryptosystem, 66
RSA cryptosystem, 68, 70

security of, 75
time needed to use it, 74

RSA encryption, 68
rule of inference, 113
rules of exponents in Zn, 63, 70
rules of inference, 107, 109, 110, 112

sample space, 183, 188
saturate(by matching edges), 298, 307
secret key, 40
selection algorithm, 172, 180

randomized, 240, 245
recursive, 180

running time, 178

set, 6
k-element permutation of, 13
partition of, 2, 6, 33
permutation of, 12
size of, 2, 6

sets
disjoint, 2
mutually disjoint, 2, 6

Shamir, 68
signature

digital, 79
simple path, 263, 271
size of a multiset, 30
size of a set, 2, 6
solution of equations in Zn, 59
solution to a recurrence inequality, 161
solutions of equations in Zn, 60
solutions to equations in Zn, 49
spanning tree, 274, 281

minimum, 284
standard deviation, 255, 257
statement

conditional, 88
contrapositive, 109
converse, 109

statements
equivalent, 86

Stirling Numbers of the second kind, 201
Stirling’s formula, 228
stronger induction hypothesis, 165
subgraph, 267

induced, 267
subtree of a graph, 274
success

expected number of trials until, 221, 223
Sum Principle, 2, 6
surjection, 11
Symmetry Principle, 26, 33

table
hash, 184

tautology, 92
Theorem

Binomial, 21, 23
Multinomial, 24
Trinomial, 23

Tour
Eulerian, 286, 294
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towers of Hanoi problem, 126
Trail

Eulerian, 286, 294
tree, 267, 271

binary, 280, 282
recursion, 146, 148, 165
rooted, 279, 282
spanning, 274, 281

minimum, 284
tree recursion, 139
trinomial coefficient, 23
Trinomial Theorem, 23
truth values, 84

uniform probability, 187, 189
union

probability of, 192, 194, 195, 199
universal generalization

Principle of, 112
universal quantifier, 95, 103
universe for a statement, 94, 103

variable
free, 94, 103

variance, 252, 256
Venn diagram, 192, 193, 199
vertex

external, 280, 282
internal, 280, 282

vertex cover, 299, 307
vertex of a graph, 261, 270

weight
probability, 184, 189

weighted graph, 284
weights for a graph, 284
wheel, 321

xor (in logic), 84, 90


