Additional problems due Wednesday April 4

1. Convert the following LP problem into standard form

maximise	ζ	=	x_1	$-3x_{2}$	$+2x_{3}$
subject to	$-x_1$	$-x_2$	$+7x_{3}$	\geq	9
	x_1	$+6x_{2}$	$+x_{3}$	\leq	28
	$2x_1$	$+x_{2}$	$-3x_{3}$	=	16
			x_1, x_2, x_3	\geq	0

2. Convert the diet problem from the first day of class into standard form. For those who weren't there, this took the form:

minimise	ζ	=	$c_1 x_1$	$+c_{2}x_{2}$	$+c_{3}x_{3}$	$+c_4x_4$
subject to	$a_{11}x_1$	$+a_{12}x_2$	$+a_{13}x_3$	$+a_{14}x_4$	\geq	b_1
	$a_{21}x_1$	$+a_{22}x_2$	$+a_{23}x_3$	$+a_{24}x_4$	\geq	b_2
	$a_{31}x_1$	$+a_{32}x_2$	$+a_{33}x_3$	$+a_{34}x_4$	\geq	b_3
				x_1, x_2, x_3, x_4	\geq	0

See Exercise 5.16 for an almost identical set-up which explains the notation.