
Basics of matrices

As before, see (for example) Linear Algebra and its Applications by David
Lay for a more thorough (and better) introduction.

A matrix is an m× n array of numbers, e.g.

 2 0
3 −1
4 2

 ,


1
0
0
0

 ,

 −1 3 1 0 0
0 2 0 1 0
1 x1 0 0 1


3× 2 4× 1 3× 5

The transpose of a matrix A, denoted AT , is obtained by swapping the
rows and columns, e.g.  2 0

3 −1
4 2

T

=

[
2 3 4
0 −1 2

]
To multiply matrices A · B, we require the number of columns in the

left matrix to be the number of rows in the right matrix. Then, for exam-
ple, we have, for a row vector ā =

[
a11 a12 a13 a14

]
and column vector

b̄ =


b11

b21

b31

b41



ā · b̄ =
[

a11 a12 a13 a14

]
·


b11

b21

b31

b41

 = [a11b11 + a12b21 + a13b31 + a14b41]

And for a general matrix, where āi and b̄j are the rows of A and columns
of B respectively, we have

A ·B =

 ← ā1 →
...

← ām →

 ·

 ↑ ↑
b̄1 · · · b̄n

↓ ↓


m× n m× p p× n

= [cij]
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where cij = āi · b̄j = a11b11 + a12b21 + . . . + a1pbp1

Notice that A ·B 6= B · A, indeed these might even have different sizes.
The n × n identity matrix In has 1’s on the leading diagonal and 0’s

elsewhere.

In =


1 0 · · · 0
0 1 0
...

. . .

0 0 1


It is such that (whenever the multiplication is defined), A · In = A and

In ·B = B.

Gaussian elimination

This is analogous to the method for solving systems of linear equations. The
allowed operations are:

• Multiply a row (column) by a nonzero constant

• Add a multiple of a row (column) to another row (column)

• Swap two rows (columns)

To try to invert a matrix A, we form the augmented matrix [A|I], where
I is an identity matrix of the same size as A. We apply Gaussian elimination
to the rows of this to try to reduce A to I. If we succeed, we reach some
[I|B], then A = B−1. If we fail, we will reduce a row of A to contain only
0’s, and conclude here that A is not invertible.

For example, if A =

[
2 1
0 −1

]
then [A|I] =

[
2 1 1 0
0 −1 0 1

]
, and ap-

plying row operations yields

[
1 0 0.5 0.5
0 1 0 −1

]
, so A−1 =

[
0.5 0.5
0 −1

]
.

This works because an invertible matrix is a product of elementary ma-
trices, left-multiplication by which correspond to the operations of Gaussian
elimination, e.g. A = E1 · E2 · . . . · Ek. Each operation is invertible, so by
applying the appropriate sequence of operations we get

E−1
k · . . . · E

−1
2 · E−1

1 · A = E−1
k · . . . · E

−1
2 · E−1

1 · E1 · E2 · . . . · Ek = I
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Applying the same operations to I, we get

E−1
k · . . . · E

−1
2 · E−1

1 · I = E−1
k · . . . · E

−1
2 · E−1

1

so we see that B = E−1
k · . . . · E

−1
2 · E−1

1 = A−1.
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