Basics of matrices

As before, see (for example) Linear Algebra and its Applications by David Lay for a more thorough (and better) introduction.

A matrix is an $m \times n$ array of numbers, e.g.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 & 0 \\
3 & -1 \\
4 & 2
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{ccccc}
-1 & 3 & 1 & 0 & 0 \\
0 & 2 & 0 & 1 & 0 \\
1 & x_{1} & 0 & 0 & 1
\end{array}\right]} \\
& 3 \times 2 \quad 4 \times 1 \quad 3 \times 5
\end{aligned}
$$

The transpose of a matrix A, denoted A^{T}, is obtained by swapping the rows and columns, e.g.

$$
\left[\begin{array}{cc}
2 & 0 \\
3 & -1 \\
4 & 2
\end{array}\right]^{T}=\left[\begin{array}{ccc}
2 & 3 & 4 \\
0 & -1 & 2
\end{array}\right]
$$

To multiply matrices $A \cdot B$, we require the number of columns in the left matrix to be the number of rows in the right matrix. Then, for example, we have, for a row vector $\bar{a}=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14}\end{array}\right]$ and column vector $\bar{b}=\left[\begin{array}{l}b_{11} \\ b_{21} \\ b_{31} \\ b_{41}\end{array}\right]$

$$
\bar{a} \cdot \bar{b}=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14}
\end{array}\right] \cdot\left[\begin{array}{l}
b_{11} \\
b_{21} \\
b_{31} \\
b_{41}
\end{array}\right]=\left[a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31}+a_{14} b_{41}\right]
$$

And for a general matrix, where \bar{a}_{i} and \bar{b}_{j} are the rows of A and columns of B respectively, we have

$$
A \cdot B=\left[\begin{array}{ccc}
\leftarrow & \bar{a}_{1} & \rightarrow \\
\vdots \\
& {\left[\begin{array}{c}
\bar{a}_{m} \\
m \times p
\end{array}\right]}
\end{array}\right] \cdot\left[\begin{array}{ccc}
\uparrow & & \uparrow \\
\bar{b}_{1} & \cdots & \bar{b}_{n} \\
\downarrow & & \downarrow
\end{array}\right]=\left[c_{i j}\right]
$$

where $c_{i j}=\bar{a}_{i} \cdot \bar{b}_{j}=a_{11} b_{11}+a_{12} b_{21}+\ldots+a_{1 p} b_{p 1}$
Notice that $A \cdot B \neq B \cdot A$, indeed these might even have different sizes.
The $n \times n$ identity matrix I_{n} has 1 's on the leading diagonal and 0 's elsewhere.

$$
I_{n}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & & 0 \\
\vdots & & \ddots & \\
0 & 0 & & 1
\end{array}\right]
$$

It is such that (whenever the multiplication is defined), $A \cdot I_{n}=A$ and $I_{n} \cdot B=B$.

Gaussian elimination

This is analogous to the method for solving systems of linear equations. The allowed operations are:

- Multiply a row (column) by a nonzero constant
- Add a multiple of a row (column) to another row (column)
- Swap two rows (columns)

To try to invert a matrix A, we form the augmented matrix $[A \mid I]$, where I is an identity matrix of the same size as A. We apply Gaussian elimination to the rows of this to try to reduce A to I. If we succeed, we reach some $[I \mid B]$, then $A=B^{-1}$. If we fail, we will reduce a row of A to contain only 0 's, and conclude here that A is not invertible.

For example, if $A=\left[\begin{array}{cc}2 & 1 \\ 0 & -1\end{array}\right]$ then $[A \mid I]=\left[\begin{array}{cccc}2 & 1 & 1 & 0 \\ 0 & -1 & 0 & 1\end{array}\right]$, and applying row operations yields $\left[\begin{array}{cccc}1 & 0 & 0.5 & 0.5 \\ 0 & 1 & 0 & -1\end{array}\right]$, so $A^{-1}=\left[\begin{array}{cc}0.5 & 0.5 \\ 0 & -1\end{array}\right]$.

This works because an invertible matrix is a product of elementary matrices, left-multiplication by which correspond to the operations of Gaussian elimination, e.g. $A=E_{1} \cdot E_{2} \cdot \ldots \cdot E_{k}$. Each operation is invertible, so by applying the appropriate sequence of operations we get

$$
E_{k}^{-1} \cdot \ldots \cdot E_{2}^{-1} \cdot E_{1}^{-1} \cdot A=E_{k}^{-1} \cdot \ldots \cdot E_{2}^{-1} \cdot E_{1}^{-1} \cdot E_{1} \cdot E_{2} \cdot \ldots \cdot E_{k}=I
$$

Applying the same operations to I, we get

$$
E_{k}^{-1} \cdot \ldots \cdot E_{2}^{-1} \cdot E_{1}^{-1} \cdot I=E_{k}^{-1} \cdot \ldots \cdot E_{2}^{-1} \cdot E_{1}^{-1}
$$

so we see that $B=E_{k}^{-1} \cdot \ldots \cdot E_{2}^{-1} \cdot E_{1}^{-1}=A^{-1}$.

