Basics of matrices

As before, see (for example) Linear Algebra and its Applications by David
Lay for a more thorough (and better) introduction.
A matrix is an m X n array of numbers, e.g.
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The transpose of a matrix A, denoted A, is obtained by swapping the
rows and columns, e.g.
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To multiply matrices A - B, we require the number of columns in the
left matrix to be the number of rows in the right matrix. Then, for exam-
ple, we have, for a row vector a = [ a1l Q2 Q13 G4 } and column vector
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And for a general matrix, where @; and b; are the rows of A and columns
of B respectively, we have
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where Cij = di . Bj = CLlle + CL12Z)21 + ...+ alpbpl

Notice that A- B # B - A, indeed these might even have different sizes.

The n x n identity matrix I, has 1’s on the leading diagonal and 0’s
elsewhere.
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It is such that (whenever the multiplication is defined), A - I, = A and
I,-B=B.

Gaussian elimination

This is analogous to the method for solving systems of linear equations. The
allowed operations are:

o Multiply a row (column) by a nonzero constant
e Add a multiple of a row (column) to another row (column)

e Swap two rows (columns)

To try to invert a matrix A, we form the augmented matrix [A|], where
I is an identity matrix of the same size as A. We apply Gaussian elimination
to the rows of this to try to reduce A to I. If we succeed, we reach some
[I|B], then A = B~!. If we fail, we will reduce a row of A to contain only

0’s, and conclude here that A is not invertible.
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For example, if A = {0 _1} then [A|I] = {O 10 11,and ap-

01 0 -1 0 -1
This works because an invertible matrix is a product of elementary ma-
trices, left-multiplication by which correspond to the operations of Gaussian
elimination, e.g. A = F; - FEy-...- F,. Each operation is invertible, so by
applying the appropriate sequence of operations we get

plying row operations yields [ L 00505 ], so A7l = [ 0505 ]
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Applying the same operations to I, we get
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sowesee that B=FE.'-... - By' Bt = AL



