Math 16 - Practice Final

May 28th 2007

Name: _____

Instructions

- 1. In Part A, attempt every question. In Part B, attempt **two** of the five questions. If you attempt more you will only receive credit for your best two answers.
- 2. Show all your work.
- 3. No books, notes or calculators allowed.
- 4. Ask me if something is unclear.

	Question	Possible	Earned
Part A	1	12	
	2	12	
	3	12	
	4	12	
	5	12	
Part B		20	
		20	
Total		100	

Part A

- 1. (a) (6 pts) What is a LP problem in standard form? Explain how to convert a problem in standard form into a dictionary.
 - (b) (6 pts) When solving a problem using the primal simplex method, how do we know when we have reached an optimal dictionary? Why does this guarantee the current solution is optimal?
- 2. (a) (2 pts) Define a degenerate dictionary.
 - (b) (2 pts) Define a degenerate pivot.
 - (c) (4 pts) What is Bland's Rule? Why is it useful?
 - (d) (4 pts) State the Fundamental Theorem of Linear Programming.
- 3. In applying the dual simplex method to a LP problem we have reached the following dictionary.

ζ	=	30	—	$3x_3$	—	$4x_2$	—	$3w_1$
x_1	=	-10	+	$3x_3$	+	$2x_2$	+	w_1
w_3	=	-21	+	$3x_3$	+	$6x_2$	$+3w_{1}$	
w_2	=	13	—	$2x_3$	—	$3x_2$	—	w_1

- (a) (4 pts) Deduce an upper bound on the optimal value of ζ . Justify your answer.
- (b) (8 pts) Perform one iteration of the dual simplex method, using the largest coefficient rule to determine the pivot variables.
- 4. Consider the following linear program:

maximise
$$x_1 - x_2 + 3x_3$$

subject to $x_2 - 2x_3 \leq -1$
 $-x_1 + 2x_3 \leq 1$
 $2x_1 - 2x_2 \leq -3$
 $x_1, \dots, x_3 \geq 0$

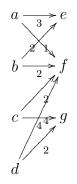
- (a) (4 pts) Write down this problem in matrix notation.
- (b) (4 pts) Write down the dual of this problem.
- (c) (4 pts) Convert the dual into standard form. What do you notice?

5. (a) (2 pts) What is the LP relaxation of the following integer programming problem?

> maximise $3x_1$ + $7x_2$ + x_3 + x_4 + $3x_5$ + $2x_6$ x_7 subject to $-x_1$ $+ x_3$ $+ x_5$ -7= 2 x_1 += x_2 x_7 0 = = 10 x_6 -5 x_6 x_7 = \geq 0 x_1 , x_7 . . . , x_1 , x_7 integers ...,

- (b) (6 pts) Convert your answer to (a) into a minimum cost network flow problem. Draw the corresponding network.
- (c) (4 pts) Explain how you could solve the original problem without using any tools from the theory of integer programming. (You do not need to solve the problem.)

Part B


- 6. (a) (3 pts) What is a polyhedron?
 - (b) (5 pts) Explain the connection between polyhedra and LP.
 - (c) (5 pts) What is the particular significance of vertices of a polyhedron?
 - (d) (7 pts) Suppose an iteration of the simplex method takes you from the solution $(x_1, x_2) = (0, 1)$ to the solution $(x_1, x_2) = (4, 3)$. Can you deduce one of the constraints of the problem?
- 7. Consider the LP problem, which has a constant a.

maximise
$$4x_1 - 22x_2 - 4x_3$$

subject to $-2x_1 + 11x_2 + 3x_3 \leq 1$
 $x_1 - 5x_2 \leq 1$
 $3x_1 - 14x_2 - 2x_3 \leq a$
 $x_1, \dots, x_3 \geq 0$

This has the following dictionary:

ζ	=	4	—	$4x_5$	—	$2x_2$	—	$4x_3$
x_4	=	3	_	$2x_5$	_	x_2	_	$3x_3$
x_1	=	1	—	x_5	+	$5x_2$		
x_6	=		+	$3x_5$	—	x_2	+	$2x_3$

- (a) (6 pts) What is the missing value in the third constraint?
- (b) (2 pts) For which values of a is this dictionary optimal?
- (c) (12 pts) Solve the problem for a = 1.
- 8. (a) (4 pts) Among minimunm cost network flow problems, what characterises the transportation problems?
 - (b) Consider the following problem which has supply of 3 at each of nodes a, b, c and d, and demand of 4 at each of nodes e, f and g.

- i. (6 pts) What is the solution in which the following arcs are basic: (a, e), (b, e), (b, f), (c, f), (d, f), (d, g)?
- ii. (10pts) Solve the problem using the simplex method.
- 9. Two players A and B each pick a number from 1 to 4 inclusive. The player with the lower number wins \$1 from his opponent, unless his number is 1 less than his opponent's number, in which case his opponent wins \$1.
 - (a) (5 pts) Write down the payoff matrix for this game in which player A is the row player.

- (b) (4 pts) Explain what an optimal strategy for a player in a matrix game looks like.
- (c) (6 pts) Write down the associated LP problem for player B.
- (d) (5 pts) What is the value of this game? (Hint: You should not have to solve an LP problem for this.)
- 10. (20 pts) Consider the following integer programming problem:

maximise	x_1	+	$2x_2$	+	$3x_3$		
subject to	x_1	+	x_2	+	x_3	\leq	10
	$2x_1$	—	x_2			\leq	4
	x_1	_	x_2	+	$4x_3$	\leq	8
					x_1,\ldots,x_3	\geq	0
					x_1, x_2	integers	

(Notice not all variables are constrained to be integers.) A Math 16 student passed away while solving the problem using the branch-andbound algorithm. The partial tree formed is pictured below. Complete his solution.

N.B. If I were writing this question for the actual Final, there would be a tree here which would require only one pivot to complete the solution (perhaps needing justification that the optimum could not lie on another uncompleted branch). I am too lazy to do that for a practice exam, so you will have to solve it from scratch. (But please don't die in the process.)