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The final test of a theory is its capacity to solve the
problems which originated it.

This work is concerned with the theory and so-
lution of linear inequality systems. . . .

The viewpoint of this work is constructive. It re-
flects the beginning of a theory sufficiently power-
ful to cope with some of the challenging decision
problems upon which it was founded.

S
o says George B. Dantzig in the preface
to his book, Linear Programming and
Extensions, a nowclassicworkpublished in
1963, some sixteen years after his formu-
lation of the linear programming problem

and discovery of the simplex algorithm for its
solution. The three passages quoted above repre-

sent essential components of Dantzig’s outlook on
linear programming and, indeed, on mathematics
generally. The first expresses his belief in the im-
portance of real world problems as an inspiration
for the development of mathematical theory, not
for its own sake, but as a means to solving impor-
tant practical problems. The second statement is
based on the theoretical fact that although a linear
programming problem, is, prima facie, concerned
with constrained optimization, it is really all about

solving a linear inequality system. The third state-
mentrevealsDantzig’sconvictionthatconstructive

Richard Cottle is professor emeritus of management

science and engineering at Stanford University. His

email address is rwc@stanford.edu. Ellis Johnson is

professor of industrial and systems engineering at the

Georgia Institute of Technology. His email address is

ejohnson@isye.gatech.edu. Roger Wets is professor of

mathematics at the University of California, Davis. His

email address is rjbwets@ucdavis.edu.

methods (in particular, algorithms) are required to

obtain the kinds of solutions called for in practical

decision problems.

George Dantzig is best known as the father of

linear programming (LP) and the inventor of the

simplex method. The practical power of these two

contributions is so great that, on these grounds

alone, he was arguably one of the most influential

mathematicians of the twentieth century. And yet

there is much more to the breadth and significance

of his work. Our aim in this memorial article is

to document the magnitude of George Dantzig’s

impact on the world by weaving together many

strands of his life and professional commitments.

In so doing, we bring to light the inadequacy of the

“father/inventor” epithet.

The impactwehave inmindisofmanykinds.The

earliest, of course, was on military and industrial

planning and production. Dantzig’s work greatly

impacted economics, mathematics, operations

research, computer science, and various fields of

applied science and technology. In response to

these developments, there emerged the concomi-

tant growth of educational programs. Dantzig

himself was a professor for more than half of his

professional life and in that capacity had a pro-

found impact on the lives and contributions of his

more than fifty doctoral students.

As already suggested, George Dantzig passion-

ately believed in the importance of real world prob-

lems as a wellspring of mathematical opportunity.

Whether this was a lesson learned or a conviction

held since early adulthood is unclear, but it served

him very well throughout his long and productive

life.
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Formation
Our knowledge of George Dantzig’s childhood is
largely derived from part of an interview [1] con-
ducted in November 1984 by Donald Albers. (Much
the same article is available in [2].) George was the
son of mathematician Tobias Dantzig (1884–1956)
and Anja Ourisson who had met while studying
mathematics at the Sorbonne. There, Tobias was
greatly impressed by Henri Poincaré (1854–1912)
and laterwrote a bookonhim[41], thoughhe isbest
known for his Number, The Language of Science
[40].

George Dantzigwasborn inPortland,Oregon,on
November 8, 1914. His parents gave him the mid-
dle name “Bernard” hoping that he would become a
writer like George Bernard Shaw. George’s younger
brotherHenry (1918–1973),whowasgiventhe mid-
dle name Poincaré, became an applied mathemati-
cian working for the Bendix Corporation.

By his own admission, George Dantzig lacked
interest in schoolwork until grade seven. He then
became keen about science and mathematics al-
though in ninth grade he made a “poor start” in his
first algebra course. “To be precise,” he said, “I was
flunking.” Furious with himself, he buckled down
and went on to excel in high school mathematics
and science courses. He was particularly absorbed
by projective geometry and worked “thousands” of
such problems given to him by his father, Tobias,
who was then on the mathematics department
faculty at the University of Maryland.

As an undergraduate, George concentrated
in mathematics and physics at the University
of Maryland, taking his A.B. degree in 1936. Af-
ter this he went to the University of Michigan
and obtained the M.A. in mathematics in 1938.
In Ann Arbor, he took a statistics course from
Harry C. Carver (founding editor of the Annals of
Mathematical Statistics and a founder of the Insti-
tute of Mathematical Statistics). He found the rest
of the curriculum excessively abstract and decided
to get a job after finishing his master’s degree
program in 1938.

Dantzig’s decision to take a job as a statistical
clerk at the Bureau of Labor Statistics (BLS) turned
out to be a fateful one. In addition to acquiring a
knowledge of many practical applications, he was
assigned to review a paper written by the eminent
mathematical statistician Jerzy Neyman who was
then at University College, London, and soon there-
after at the University of California at Berkeley. Ex-
cited by Neyman’s paper, Dantzig saw in it a logi-
cally based approach to statistics rather than a bag
oftricks.HewrotetoNeyman(atBerkeley)declaring
his desire to complete a doctorate under Neyman’s
supervision, and this ultimately came to pass.

In 1939 Dantzig enrolled in the Ph.D. program
of the Berkeley Mathematics Department where
Neyman’s professorship was located. Dantzig took
only two courses from Neyman, but in one of them

George B. Dantzig

he had a remarkable ex-

perience that was to be-

come a famous legend.

Arriving late to one of

Neyman’sclasses,Dantzig
saw two problems writ-

ten on the blackboard

and mistook them for

a homework assignment.
He found them more chal-

lenging than usual, but

managed to solve them

and submitted them di-

rectly to Neyman. As it
turned out, these prob-

lems were actually two open questions in the

theory of mathematical statistics. Dantzig’s 57-

page Ph.D. thesis [12] was composed of his
solutions to these two problems. One of these

was immediatelysubmitted for publication and ap-

peared in 1940 as [11]. For reasons that are not

altogether clear, the other appeared only in 1951

as a joint paper with AbrahamWald [39].
By June 1941, the content of Dantzig’s disser-

tation had been settled: it was to be on the two

problems and their solutions. Although he still had

various degree requirements to complete, he was
eager to contribute to the war effort and joined the

U.S. Air Force Office of Statistical Control. He was

put in charge of the Combat Analysis Branch where

he developed a system through which combat units

reported data on missions. Some of this work also
involved planning (and hence modeling) that, in

light of the primitive computing machinery of the

day, was a definite challenge. The War Department

recognized his achievements by awarding him its

Exceptional Civilian Service Medal in 1944.
Dantzig returned to Berkeley in the spring of

1946 to complete his Ph.D. requirements, mainly

a minor thesis and a dissertation defense. Around

that time he was offered a position at Berkeley but
turneditdowninfavorofbecomingamathematical

advisor at the U.S. Air Force Comptroller’s Office.

This secondfatefuldecisionsethimona path to the

discovery of linear programming and the simplex

algorithm for its solution in 1947.

Origins
Dantzig’s roles in the discovery of LP and the

simplex method are intimately linked with the

historical circumstances, notably the Cold War
and the early days of the Computer Age. The de-

fense efforts undertaken during World War II and

its aftermath included very significant contribu-

tions from a broad range of scientists, many of

whom had fled the horrors of the Nazi regime. This
trend heightened the recognition of the power that

mathematical modeling and analysis could bring

to real-world problem solving. Beginning in 1946,
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Dantzig’s responsibility at the Pentagon involved
the “mechanization” of the Air Force’s planning
procedures to support time-staged deployment of
training and supply activities. Dantzig’s approach
to the mathematization of this practical problem
ushered in a new scientific era and led to his fame in
an ever-widening circle of disciplines.

In [19], George Dantzig gives a detached, histor-
ical account of the origins of—and influences on—
linear programming and the simplex method. Al-
most twenty years later, as he approached the age
ofseventy,Dantzigbeganturningoutnumerous in-
vitedarticles [21]–[26] onthis subject,mostof them
having an autobiographical tone. From the mathe-
matical standpoint, there is probably none better
than [25] which, unlike the rest, explicitly relates
partofhisdoctoraldissertation to the fieldof linear
programming.

Dantzig was not alone in writing about the dis-
covery of linear programming. One of the most
informative articles on this subject is that of Robert
Dorfman, a professor of economics at Harvard
(now deceased). In telling the story, Dorfman [46]
clarifies “the roles of the principal contributors”.
As he goes on to say, “it is not an especially com-
plicated story, as histories of scientific discoveries
go, but neither is it entirely straightforward.” These
opening remarks are meant to suggest that many
elements of linear programming had already been
come upon prior to their independent discovery by
Dantzig in 1947. For the convenience of readers,
the present article will revisit a bit of this lore and
will endeavor toestablish the pointmade at the out-
set that Dantzig’s greatness rests not only on the
discovery of linear programming and the simplex
method, but on the depth of his commitment to
their development and extensions.

At the outset of Dantzig’s work on linear pro-
gramming, there already existed studies by two of
the principal contributors to its discovery. The first
of these was done by the mathematician Leonid
V. Kantorovich. The second was by the mathemat-
ical statistician/economist Tjalling C. Koopmans.
For good reasons, these advances were unknown to
Dantzig.

As a professor of mathematics and head of
the Department of Mathematics at the Institute
of Mathematics and Mechanics of Leningrad State
University, Kantorovich was consulted by some
engineers from the Laboratory of the Veneer Trust
who were concerned with the efficient use of ma-
chines. From that practical contact sprung his
report on linear programming [57], which, though
it appeared in 1939, seems not to have been known
in the West (or the East) until the late 1950s and was
not generally available in English translation [60]
until 1960. (This historically important document
is a 68-page booklet in the style of a preprint. Kan-
torovich [61, p. 31] describes it as a “pamphlet”.)
Two other publications of Kantorovich deserve

mention here. In [58], Kantorovich proposed an
approach to solving some classesof extremal prob-
lems that would include the linear programming
problem. A brief discussion of the second paper
[59] is givenbelow. It isworthnotinghere that these
two articles—written in English during World War
II—were reviewed by H. H. Goldstine [55] and Max
Shiffman [75], respectively. Hence they were not
altogether unknown in the West.

In 1940 Koopmans emigrated from the Nether-
lands to the United States. During World War II he
was employed by the Combined Shipping Adjust-
ment Board, an agency based in Washington, D.C.,
that coordinated the merchant fleets of the Allied
governments, chiefly the United States and Britain.
Koopmans’sfirstpaperofa linearprogrammingna-
ture dates from 1942. For security reasons, the pa-
per was classified. It became available as part of a
Festschrift in1970[63].Basedonthiswartimeexpe-
rience, Koopmans’s 1947 paper [64] develops what
later came to be called the transportation problem
[14]. These works are not algorithmic; they empha-
size themodelingaspect for theparticularshipping
application that Koopmans had in mind.

As Koopmans was later to discover, the special
class of linear programming problems he had writ-
tenabout (namely, the transportationproblem)had
alreadybeenpublishedin1941byanMITalgebraist
named Frank L. Hitchcock. The title of Hitchcock’s
paper, “The distribution of a product from several
sources to numerous localities” [56], describes
what the transportation problem is about, includ-
ing its important criterion of least cost. (A review
of the paper [56] can be found in [62].) Hitchcock
makes only the slightest of suggestions on the
application of the model and method he advances
in his paper.

Just as Hitchcock’s paper was unknown to
Koopmans (and to Dantzig), so too the work of
Kantorovich on the transportation problem was
unknown to Hitchcock. Moreover, it appears that
in writing his paper [59] on the “translocation of
masses”,Kantorovichwasnotfamiliarwiththevery
much earlier paper [68] of Gustave Monge (1746–
1818) on “cutting and filling”, a study carried out
in conjunction with the French mathematician’s
work on the moving of soil for building military
fortifications. The formulation in terms of contin-
uous mass distributions has come to be called the
“Monge-Kantorovich Problem”.

A few others contributed to the “pre-history” of
linear programming. In 1826 Jean-Baptiste Joseph
Fourier announced a method for the solution of
linear inequality systems [52]; it has elements in
common with the simplex method of LP. Charles
de la Vallée Poussin in 1911 gave a method for
finding minimum deviation solutions of systems
of equations [81]. John von Neumann’s famous
game theory paper [70] of 1928, and his book [72]
written with Oscar Morgenstern and published in
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1944, treated finite two-person zero-sum games,

a subject that is intimately connected with linear

programming; von Neumann’s paper [71] is of

particular interest in this regard. In addition to

theseprecursors, thereremainsTheodorMotzkin’s

scholarly dissertation Beiträge zur Theorie der

Linearen Ungleichungen accepted in 1933 at the

University of Basel and published in 1936 [69]. (For

a loose English translation of this work, see [7].)

Apart from studying the general question of the

existence (ornonexistence) of solutions to linear in-

equalitysystems,Motzkingaveanelimination-type

solution method resembling the technique used

earlierbyFourier (andDines [43] whoseemstohave

concentrated on strict inequalities).

Initially, Dantzig knew nothing of these prece-

dents, yet he did respond to a powerful influence:

Wassily Leontief’s work [67] on the structure of the

American economy. This was brought to Dantzig’s

attention by a former BLS colleague and friend,

Duane Evans. The two apparently discussed this

subject at length. In Dantzig’s opinion [19, p. 17]

“Leontief’s great contribution . . . was his construc-

tion of a quantitative model . . . for the purpose

of tracing the impact of government policy and

consumer trendsupona large numberof industries

which were imbedded in a highly complex series of

interlocking relationships.” Leontief’s use of “an

empirical model” as distinct from a “purely formal

model” greatly impressedDantzig as did Leontief’s

organizational talent in acquiring the data and his

“marketing” of the results. “These things,” Dantzig

declares, “are necessary steps for successful appli-

cations, and Leontief took them all. That is why in

my book he is a hero” [1, p. 303].

Carrying out his assignment at the U.S.A.F.

Comptroller’s Office, George Dantzig applied him-

selftothemechanizationoftheAirForce’splanning

procedures tosupport the time-stageddeployment

of training and supply activities. He createda linear

mathematical model representing what supplies

were available and what outputs were required

over a multi-period time horizon. Such conditions

normally leadtoanunder-determinedsystem,even

when the variables are required to assume nonneg-

ative values, which they were in this case, reflecting

their interpretation as physical quantitities. To

single out a “best” solution, Dantzig introduced a

linear objective function, that is, a linear minimand

or maximand. This was an innovation in planning

circles, an achievement in which Dantzig took great

pride. As he put it in 1957, “linear programming is

an anachronism”; here he was alluding to the work

of economists François Quesnay, Léon Walras, and

Wassily Leontief as well as mathematician John

von Neumann all of whom could (and in his mind,

should) have introduced objective functions in

their work [42, p. 102].

Dantzig’s discovery of the linear programming

problem and the simplex algorithm was indepen-

dent of [52], [81], [57], [56], and [63]. Yet, as he

has often related, it was not done in isolation. On

the formulation side, he was in contact with Air

Force colleagues, particularly Murray Geisler and

Marshall K. Wood, and with National Bureau of

Standards (NBS) personnel. At the suggestion of

Albert Kahn at NBS, Dantzig consulted Koopmans

who was by then at the Cowles Commission for

Research inEconomics (whichuntil1955wasbased

at the University of Chicago). The visit took place in

June 1947 and got off to a slow start; before long,

Koopmans perceived the broad economic signif-

icance of Dantzig’s general (linear programming)

model. This might have prompted Koopmans to

disclose information about his 1942 work on the

transportation problem and Hitchcock’s paper of

1941.

Another key visit took place in October 1947

at the Institute for Advanced Study (IAS) where

Dantzig met with John von Neumann. Dantzig’s

vivid account of the exchange is given in [1, p. 309]

where he recalls, “I began by explaining the for-

mulation of the linear programming model . . . I

described it to him as I would to an ordinary mortal.

He responded in a way which I believe was unchar-

acteristic of him. ‘Get to the point,’ he snapped.

. . . In less than a minute, I slapped the geometric

and algebraic versions of my problem on the black-

board. He stood up and said, ‘Oh that.’ ” Just a few

years earlier von Neumann had co-authored and

published the landmark monograph [72]. Dantzig

goes on, “for the next hour and a half [he] pro-

ceeded to give me a lecture on the mathematical

theory of linear programs.” Dantzig credited von

Neumann with edifying him on Farkas’s lemma and

the duality theorem (of linear programming). On

a separate visit to Princeton in June 1948, Dantzig

met Albert Tucker who with his students Harold

KuhnandDavidGalegave thefirstrigorousproofof

the duality theoremthatvonNeumannandDantzig

had discussedat their initial meeting.

During the summer of 1947, months before his

encounter with von Neumann at the IAS, Dantzig

proposed his simplex method (much as described

elsewhere in this article); in the process of this dis-

covery he discussed versions of the algorithm with

economists Leonid Hurwicz and Tjalling Koop-

mans. It was recognized that the method amounts

to traversing a path of edges on a polyhedron; for

that reason he set it aside, expecting it to be too

inefficient for practical use. These reservations

were eventually overcome when he interpreted the

method in what he called the “column geometry”,

presumably inspired by Part I of his Ph.D. thesis

[12], [39], [25, p. 143]. There, the analogue of a

so-called convexity constraint is present. With a
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constraint of the form

(1) x1 + ·· · + xn = 1, xj ≥ 0 j = 1, . . . , n

(which is common, but by no means generic) the re-
maining constraints

(2) A.1x1 + ·· · +A.nxn = b

amount to asking for a representation ofb as a con-

vex combination of the columns A.1, . . . A.n ∈ IRm.
(Of course, the solutions of (1) alone constitute
an n − 1 simplex in IRn, but that is not exactly
where the name “simplex method” comes from.)
By adjoining the objective function coefficients
cj to the columns A.j , thereby forming vectors
(A.j , cj) and adjoining a variable component z to
the vector b to obtain (b, z), Dantzig viewed the

corresponding linear programming problem as
one of finding a positively weighted average of the
vectors (A.1, c1), . . . , (A.n, cn) that equals (b, z) and
yields the largest (or smallest) value of z.

Itwasknownthat ifa linearprogram(instandard
form) has an optimal solution, then it must have
an optimal solution that is also an extreme point of
the feasible region (the set of all vectors satisfying
the constraints). Furthermore, the extreme points

of the feasible region correspond (albeit not neces-
sarily in a bijective way) to basic feasible solutions
of the constraints expressed as a system of linear
equations. Under the reasonable assumption that
thesystem(1), (2)hasfullrank,oneis ledtoconsider
nonsingular matrices of the form

(3) B =

[

1 1 · · · 1
A.j1 A.j2 · · · A.jm+1

]

such that

(4) B−1

[

1
b

]

≥ 0.

The columns A.j1 , A.j2 , . . . , A.jm+1 viewed as points
in IRm are easily seen to be in general position. Ac-
cordingly, their convex hull is anm-simplex.

Dantzig conceptualized the n pointsA.j as lying
in the “horizontal” space IRm and then pictured
each (m + 1)-tuple (A.j , cj) as a point on the line
orthogonal to IRm and passing through A.j with

cj measuring the vertical distance of the point
above or below the horizontal “plane”, according
to the sign of cj . The requirement line consisting
of points (b, z) where b ∈ IRm is as above and z
is the (variable) value of the objective function is
likewise orthogonal to the horizontal plane. For
any feasible basis, the requirement line meets
σ , the convex hull of the corresponding points
(A.j1 , cj1), (A.j2 , cj2), . . . , (A.jm+1 , cjm+1), in the point

(b, z), the ordinate z being the value of the objec-
tive function given by the associated basic solution.
The m + 1 vertices of the simplex σ determine a

hyperplane in IRm+1. The vertical distance from a
point (A.j , cj) to this hyperplane indicates whether
this point will improve the objective value of the

basic solution that would be obtained if it were to

replace one of the basic columns. The convex hull

of this new point and σ is an (m + 1)-simplex τ

in IRm+1. The requirement line meets the boundary
of τ in two points: the previous solution and one

other point with a better objective function value.

In the (nondegenerate) case where the new point

lies in the relative interiorofa facetofτ, sayρ, there

is a unique (currently basic) column for which the
corresponding weight (barycentric coordinate) is

zero. This point is opposite the new facet ρ where

the requirement line meets the boundary ofτ . Note

that ρ is an m-simplex and corresponds to a new
andimprovedfeasiblebasis.Theprocessofmaking

the basis change is called simplex pivoting. The

name can be seen as an apt one when the facets of

τ are likened to the (often triangle-shaped) body
partsof a hinge.

Beyond the fact that not all linear program-

ming problems include convexity constraints, it

was clear that, without significant advances in au-
tomatic computing machines, the algorithm—in

whatever form it took—was no match for the size

of the planning problems for which numerical so-

lutions were needed. One such need is typified by a

critical situation that came up less than a year after
Dantzig’s discoveries: the Berlin Airlift. Lasting

463 days, this program called for the scheduling of

aircraftandsupplyactivities, including the training

of pilots, on a very large, dynamic scale. During
this crisis, Britain, France, and the United States

airlifted more than two million tons of food and

supplies to the residents of West Berlin whose road,

rail, and water contacts with Western Europe had
beenseveredby the USSR.

Initial Impacts
“Mathematical Techniques of Program Planning” is

the title of the brief talk in which Dantzig publicly
announced his discovery of the simplex

method. The presentation took place at a ses-

sion of the joint annual meeting of the American

Statistical Association (ASA) and the Institute of
MathematicalStatistics (IMS)onDecember29,1947

[48, p. 134].AsDorfmanreports [46, p. 292], “there

is no evidence that Dantzig’s paper attracted any

particular interest or notice.” The paper was not
published.Themethod’snextappearanceoccurred

in a session (chaired by von Neumann) at a joint

national meeting of the IMS and the Econometric

Society on September 9, 1948. Dantzig’s talk, titled

“Programming ina LinearStructure”, arousedmore
interest than its predecessor. The abstract [13] is

remarkable for its visionary scope. In it we find

mention of the LP model, the notion of dynamic

systems, connections with the theory of games, a
reference to computational procedures for “large

scale digital computers”, and the bold sugges-

tion that the solutions of such problems could be
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implemented and not merely discussed. A lively
discussion followed Dantzig’s talk; afterwards
he participated in a panel discussion beside such
distinguished figures as Harold Hotelling, Irving
Kaplansky, Samuel Karlin, Lloyd Shapley, and John
Tukey. The ball was now rolling.

In an autobiographical piece [66] written around
the time he (andKantorovich) received the 1975No-
bel Prize in Economics, Tjalling Koopmans relates
how in 1944 his “work at the Merchant Shipping
Mission fizzled” due to a “reshuffling of respon-
sibilities”. Renewing his contact with economist
Jacob Marschak, Koopmans secured a position at
the Cowles Commission in Chicago. He goes on to
say “my work on the transportation model broad-
ened out into the study of activity analysis at the
Cowles Commission as a result of a brief but impor-
tant conversation with George Dantzig, probably
in early 1947. It was followed by regular contacts
anddiscussionsextendingoverseveralyears there-
after. Some of these discussions included Albert
W. Tucker of Princeton who added greatly to my
understanding of the mathematical structure of
duality.”

Oddly, Koopmans’s autobiographical note
makes no mention of his instrumental role in
staging what must be considered one of the most
influential events in the development of linear (and
nonlinear)programming: the“ConferenceonActiv-
ity Analysis of Production and Allocation” held in
Chicago under the auspices of the Cowles Commis-
sionforResearch inEconomics in June 1949.Edited
by Koopmans, the proceedings volume [65] of this
conference comprises twenty-five papers, four of
which were authored—and one co-authored—by
Dantzig. The speakers and other participants, ap-
proximately fifty in all, constitute an impressive
set of individuals representing academia, govern-
ment agencies, and the military establishment. It
is a matter of some interest that the proceedings
volume mentions no participants from industry.
Exactly the same typesof individualswere speakers
at the “Symposium on Linear Inequalities and Pro-
gramming” held in Washington, D.C., June 14–16,
1951. Of the nineteen papers presented, twelve
were concerned with mathematical theory and
computational methods while the remaining seven
dealt with applications. In addition to a paper by
George Dantzig and Alex Orden offering “A duality
theorem based on the simplex method”, the first
part of the proceedings contains Merrill Flood’s
paper “On the Hitchcock distribution problem”,
that is, the transportation problem. Flood rounds
up the pre-existing literature on this subject in-
cluding the 1942 paper of Kantorovich though not
the 1781 paper of Monge. Among the papers in the
portion of the proceedings on applications, there
appears the abstract (though not the paper) by
Abraham Charnes, William Cooper and Bob Mellon
(an employee of Gulf Oil Co.) on “Blending aviation

gasolines”. This—and, more generally, blending
in the petrochemical and other industries—was
to become an important early application area for
linear programming. From this group of papers one
cansensethetransitionofthesubject frommilitary
applications to its many fruitful applications in
the civilian domain. Before long, the writings of
Dantzigandothersattracted the attentionofa wide
circle of applied scientists, including many from
industry. See [3].

Besides the transportation problem, which con-
tinues to have utility in shipping and distribution
enterprises, an early direction of applied linear
programming is to be found in agriculture, a ven-
erable topic of interest within economics. Our
illustration is drawn from a historically important
article that provided a natural setting for the LP. In
1945, George J. Stigler [79] published a paper that
develops a model for finding a least-cost “diet” that
would provide at least a prescribed set of nutri-
tional requirements. [See the companion piece by
Gale in this issue for a discussion of the formula-
tion.] Dantzig reports [19, p. 551] how in 1947 the
simplex method was tried out on Stigler’s nutrition
model (or “diet problem” as it is now called). The
constraints involved nine equations in seventy-
seven unknowns. At the time, this was considered
a large problem. In solving the LP by the sim-
plex method, the computations were performed
on hand-operated desk calulators. According to
Dantzig, this process took “approximately 120
man-days to obtain a solution.” Such was the state
of computing in those days. In 1953, the problem
was solved and printed out by an IBM 701 computer
in twelve minutes. Today, the problem would be
considered small and solved in less than a second
on a personal computer [54]. One may question the
palatability of a diet for human consumption based
on LP principles. Actually, the main application of
this methodology lies in the animal feed industry
where it is of great interest.

The Air Force’s desire to mechanize planning
procedures and George Dantzig’s contributions
to that effort through his creation of linear pro-
gramming and the simplex method had a very
significant impact on the development of comput-
ing machines. The encouraging results obtained
by Dantzig and his co-workers convinced the Air
Force Comptroller, Lt. Gen. Edwin W. Rawlings, that
much could be accomplished with more powerful
computers. Accordingly, he transferred the (then
large) sum of US$400,000 to the National Bureau
of Standards which in turn funded mathematical
and electronic computer research (both in-house)
as well as the development of several computers
such as UNIVAC, IBM, SEAC, and SWAC. Speaking
to a military audience in 1956, General Rawlings
notes, “I believe it can be fairly said that the Air
Force interest in actual financial investments in
the development of electronic computers has been
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one of the important factors in their rapid devel-

opment in this country” [74]. Dantzig took pride

in the part that linear programming played in the

developmentof computers.

The list of other industrial applications of linear
programming—even in its earlyhistory—is impres-

sive. A quick sense of this can be gleaned from Saul

Gass’s1958 textbook [53], one of the first to appear

on the subject. In addition to a substantial chapter
on applications of linear programming, it contains

a bibliography of LP applications of all sorts or-

ganized under twelve major headings (selected

from the broader work [54]). Under the heading

“Industrial Applications”, Gass lists publications
pertaining to the following industries: chemical,

coal, commerical airlines, communications, iron

and steel, paper,petroleum, and railroad.

Also published in 1958 was the book Linear
Programming and Economic Analysisby Dorfman,

Samuelson, and Solow [47]. “Intended not as a text

butasageneralexpositionoftherelationshipof lin-

ear programming to standard economic analysis”

it had “been successfully used for graduate classes
in economics.” Its preface proclaims that “linear

programming has been one of the most important

postwar developments in economic theory.” The

authors highlight LP’s interrelations with von Neu-
mann’s theory of games, with welfare economics,

and with Walrasian equilibrium. Arrow [4] gives a

perspective on Dantzig’s role in the development

of economic analysis.

Early Extensions
From its inception, the practical significance of lin-

earprogrammingwasplain tosee. Equallyvisible to

Dantzigandotherswasafamilyofrelatedproblems

that came to be known as extensions of linear pro-
gramming. We turn to these now to convey another

sense of the impact of LP and its applications.

In this same early period, important advances

were made in the realm of nonlinear optimization.

H. W. Kuhn and A. W. Tucker presented their work
“Nonlinear programming” at the Second Berke-

ley Symposium on Mathematical Statistics and

Probability, the proceedings of which appeared

in 1951. This paper gives necessary conditions of
optimality for the (possibly) nonlinear inequality

constrained minimization of a (possibly) nonlinear

objective function. The result is a descendant of

the so-called “Method of Lagrange multipliers”. A

similar theorem had been obtained by F. John and
published in the “Courant Anniversary Volume”

of 1948. For some time now, these optimality con-

ditions have been called the Karush-Kuhn-Tucker

conditions, in recognition of the virtually identical

result presented in Wm. Karush’s (unpublished)
master’s thesis at the UniversityofChicago in1939.

Dorfman’s doctoral dissertation Application of

Linear Programming to the Theory of the Firm,

Including an Analysis of Monopolistic Firms by

Non-linear Programming appeared in book form

[45] in 1951. It might well be the first book that

ever used “linear programming” in its title. The

“non-linear programming” mentioned therein is

what he calls “quadratic programming”, the opti-

mization of a quadratic function subject to linear

inequality constraints. The first book on linear

programming per se was [9], An Introduction to

Linear Programming by A. Charnes, W. W. Cooper,

and A. Henderson, published in 1953. Organized in

two parts (applications and theory), the material of

this slender volume is based on seminar lectures

given at Carnegie Institute of Technology (now

Carnegie-Mellon University).

Organizations and Journals
Linear and nonlinear programming (collectively

subsumed under the name “mathematical pro-

gramming”) played a significant role in the forma-

tionofprofessionalorganizations.AsearlyasApril

1948, the Operational Research Club was founded

in London; five years later, it became the Opera-

tional Research Society (of the UK). The Operations

Research Society of America (ORSA) was founded

in 1952, followed the next year, by the Institute of

ManagementSciences (TIMS).Theseparallelorgani-

zations, each with its own journals, merged in 1995

to form the Institute for Operations Research and

the Management Sciences (INFORMS) with a mem-

bership today of about 12,000. Worldwide, there

are now some forty-eight national OR societies with

a combined membership in the vicinity of 25,000.

Mathematical programming (or “optimization” as

it now tends to be called) was only one of many

subjects appearing in the pages of these journals.

Indeed, the first volumes of these journals devoted

a small portion of their space to mathematical

programming. But that would change dramatically

with time.

Over the years, many scientific journals have

been established to keep pace with this active field

of research. Inaddition to the journalMathematical

Programming, there are today about a dozen more

whose name includes the word “optimization”.

These, of course, augment the OR journals of OR

societiesand other such publications.

Educational Programs
Delivering a summarizing talk at “The Second Sym-

posium in Linear Programming” (Washington, D.C.,

January 27–29, 1955) Dantzig said “The great body

of my talk has been devoted to technical aspects

of linear programming. I have discussed simple de-

vices that can make possible the efficient solution

ofa varietyofproblemsencountered inpractice. In-

terest in this subject has been steadily growing in

industrial establishments and in government and
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some of these ideas may make the difference be-

tween interest and use.” The notion of “making the

difference between interest and use” was a deeply

held conviction of Dantzig’s. He knew how much

could be accomplished through the combination of

modeling, mathematical analysis, and algorithms

like the simplex method. And then he added a pre-

diction.“Duringthenexttenyearswewillseeagreat

body of important applications; indeed, so rich in

content and value to industry and government that

mathematics of programming will move to a princi-

pal position in college curriculums” [15, p. 685].

By the early 1950s, operations research (OR)

courses had begun appearing in university curric-

ula, andalongwith themcame linearprogramming.

We have already mentioned the lectures of Charnes

and Cooper at Carnegie Tech in 1953. In that year

both OR and LP were offered as graduate courses

at Case Institute of Technology (the predecessor

of Case Western Reserve University). At Stanford

OR was first taught in the Industrial Engineering

Program in the 1954–55 academic year, and LP was

one of the topics covered. At Cornell instruction in

these subjects began in 1955, while at Northwest-

ern it began in 1957. In the decades that followed,

the worldwide teaching of OR at post-secondary

institutions grew dramatically. In some cases,

separate departments of operations research and

corresponding degree programs were established;

in other cases these words (or alternatives like

“management science” or “decision science”) were

added to the name of an existing department, and

there were other arrangements as well. The inter-

disciplinary nature of the field made for a wide

range of names and academic homes for the sub-

ject, sometimes even within the same institution,

such as Stanford, about which George Dantzig was

fond of saying “it’s wall-to-wall OR.” Wherever op-

erations research gained a strong footing, subjects

like linear programming outgrew their place within

introductory survey courses; they became many

individual courses in their own right.

Alongwiththedevelopmentofacademiccourses

came a burst of publishing activity. Textbooks for

the classroom and treatises for seminars and re-

searchers on a wide range of OR topics came forth.

Books on mathematical programming were a major

part of this trend. One of the most important of

these was George Dantzig’s Linear Programming

and Extensions [19].Published in1963, itsucceeded

bytwoyears themonographofCharnesandCooper

[8]. Dantzig’s book was so rich in ideas that it soon

came to be called “The Bible of Linear Program-

ming”. Two of the sections to follow treat Dantzig’s

direct role in academic programs. For now, we

return to the chronology of his professional career.

Dantzig at RAND
In 1952 George Dantzig joined the RAND Corpo-
ration in Santa Monica, California, as a research
mathematician. The RAND Corporation had come
into being in 1948 as an independent, private non-
profit organization after having been established
three years earlier as the Air Force’s Project RAND,
established in 1945 through a special contract
with the Douglas Aircraft Company. Despite its
separation from Douglas—under which Project
RAND reported to Air Force Major General Curtis
LeMay, the Deputy Chief of Air Staff for Research
and Development—the newly formed RAND Cor-
porationmaintainedacloseconnectionwiththeAir
Force and was often said to be an Air Force “think
tank”.

The reason for Dantzig’s job change (from
mathematical advisor at the Pentagon to research
mathematician at RAND) is a subject on which the
interviews and memoirs are silent. In [1, p. 311]
he warmly describes the environment that existed
in the Mathematics Division under its head, John
D. Williams. The colleagues were outstanding and
the organizational chart was flat. These were rea-
sons enough to like it, but there must have been
another motivation: the freedom to conduct re-
search that would advance the subject and to write
the book [19].

The 1950swere exciting times for research in the
Mathematics Division at RAND. There, Dantzig en-
joyed the stimulation of excellent mathematicians
and the receptiveness of its sponsors. During his
eight years (1952–1960) at RAND, Dantzig wrote
many seminal papers and internal research memo-
randa focusing on game theory, LP and variants of
the simplex method, large-scale LP, linear program-
ming under uncertainty, network optimization
including the traveling salesman problem, integer
linear programming, and a variety of applications.
Much of this work appeared first in the periodical
literature and then later in [19].

The topic of methods for solving large-scale lin-
earprograms,whichhaddrawnDantzig’s attention
at the Pentagon, persisted at RAND—and for years
to come. Although the diet problem described
above was considered “large” at the time, it was
puny by comparison with the kinds of problems
the Air Force had in mind. Some inkling of this
can be obtained from the opening of a talk given
by M. K. Wood at the 1951 “Symposium on Linear
Inequalities and Programming”. He says in its pro-
ceedings [73, p. 3], “Just to indicate the general size
of the programming problem with which we are
faced, Iwould like togive youa fewstatistics.We are
discussing an organization of over a million people
who are classified in about a thousand different
occupational skills. These people are organized
into about ten thousand distince [sic] organiza-
tional units, each with its own staff and functions,
located at something over three hundred major
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operating locations. The organizational units use

approximately one million different kinds of items

of supplies and equipment, at a total annual cost of

something overfifteen billion dollars.”

The challenge of solving problems on such a

grand scale was one that Dantzig took seriously.

Speaking at the “First International Conference on

Operational Research” in 1957, he acknowledged,

“While the initial proposal was to use a linear pro-

gramming model to develop Air Force programs,

it was recognized at an early date that even the

most optimistic estimates of the efficiency of fu-

ture computing procedures and facilities would

not be powerful enough to prepare detailed Air

Force programs” [17]. Nevertheless, he steadfastly

devotedhimself to the cause of improving the capa-

bilities of mathematical programming, especially

the simplex method of linear programming.

If one had to characterize Dantzig’s work on

large-scale systems, more specifically, large-scale

linear programs, it could be viewed as the design

of variants of the simplex method that require

only the use of a “compact” basis, i.e., that simplex

iterations will be carried out by relying on a basisof

significantly reduced size. Early on, it was observed

that given a linear program in standard form, i.e.,

min c · x subject toAx = b, x ≥ 0, the efficiency of

the simplex method is closely tied to the number of

linear constraints (Ax = b) that determine the size

of the basis rather than to the number of variables.

It is part of the linear programming folklore that

“in practice” the number of steps required to solve

a linear program is of the order of 3m/2 where

m is the number of linear constraints. Moreover,

working with a compact basis (i.e., one of small

order), which was essentially going be inverted,

would make the method significantly more reliable

from a numerical viewpoint.

The first challenging test of the simplex method

ona “large-scale”problemhadcome indealingwith

Stigler’s diet problem; the introduction of upper

bounds on the amounts of various foods greatly

enlarged the number of constraints, thereby ex-

acerbating an already difficult problem. The need

to have a special version of the simplex method to

deal with upper bounds came up again at RAND.

Researchers were dissatisfied with the turn-around

time for the jobs submitted to their computer cen-

ter, mostly because certain top-priority projects

would absorb all available computing resources

for weeks. That is when a more flexible priority

scheduling method was devised in which the value

assigned to a job decreased as its completion date

was delayed. The formulation of this scheduling

problem turned out to be a linear program having

special (assignment-like) structure and the restric-

tion that the number of hours xij to be assigned to

each project i in week j could not exceed a certain

upperbound, sayαij . In linearprogramming terms,

the problem was of the following type,

min c · x subject toAx = b, lb ≤ x ≤ ub,

withm linear constraints (Ax = b) and, rather than
just nonnegativity restrictions on the x-variables,
the vectors lb and ub imposed lower and upper

bounds on x. Here after an appropriate change of
variables and inclusion of the slack variables, the

problem would pass from one with m linear con-
straints to one with at leastm + n such constraints.

Solving the scheduling problem might have been
the source of further delays! That is when Dantzig

introduced a new pivoting scheme that would be
integrated in any further implementation of the

simplex method. It would essentially deal with the
problem as one with only m linear constraints re-

quiring just a modicum of additional bookkeeping
to keep track of variables at their lower bounds,

the basic variables, and those at their upper bound,
rather than just with basic and nonbasic variables

as in the original versionof the simplex method.
Dantzig’s work on the transportation problem

and certain network problems had made him aware
that the simplex method becomes extremely ef-

ficient when the basis has either a triangular or
a nearly triangular structure. Moreover, as the
simplex method was being used to solve more

sophisticated models, in particular involving dy-
namical systems, the need for variants of the

simplex method to handle such larger-scale prob-
lems became more acute. Although the simplex

basesofsuchproblemsarenotprecisely triangular,
they have a block triangular structure, e.g.,













A11

A21 A22

. . .

AT1 AT2 . . . ATT




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





,

thatcanbe exploited to“compactify” the numerical
operations required by the simplex method. All

present-day, commercial-level, efficient implemen-
tations of the simplex method make use of the

shortcuts proposed by Dantzig in [16], in particular
in the choice of heuristics designed to identify a

good starting basis known among professionals as
a “crash start”.

In the late 1950s, Dantzig and Wolfe proposed
the Decomposition Principle for linear programs on

which they lectured at the RAND Symposium on
Mathematical Programming in March 1959. Their

approach was inspired by that of Ford and Fulker-
son on multistage commodity network problems
[51]. Actually, the methodology is based on funda-

mental results dating back to the pioneering work
of Minkowski and Weyl on convex polyhedral sets.

By the mid-1950s Dantzig had already written a
couple of papers on stochastic programming; he

realized that a method was needed to handle really
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large linear programs, with “large” now taking on
its present-day meaning.

Because it illustrates so well how theory can
be exploited in a computational environment, we
present an abbreviated description of the method.
Suppose we have split our system of linear con-
straints in two groups so that the linear program
takes on the form,

min c · x subject toAx = b, Tx = d, x ≥ 0

where the constraints have been divided up so
that Ax = b consists of a relatively small num-
ber, say m, of linking constraints, and the system
Tx = d is large. As shall be seen later on, sto-
chastic programs will provide good examples of
problems that naturally fall into this pattern. The
set K =

{

x ∈ IRn+
∣

∣Tx = d
}

is a polyhedral set
that in view of the Weyl-Minkowski Theorem ad-
mits a “dual” representation as a finitely generated
set obtained as the sum of a polytope (bounded
polyhedron)

{

x =

r
∑

k=1

pkλk
∣

∣

r
∑

k=1

λk = 1, λk ≥ 0, k = 1, . . . , r
}

and a polyhedral cone

{

x =

s
∑

l=1

qlµl
∣

∣µ ≥ 0, l = 1, . . . , s
}

with both r and s finite. Our given problem is thus
equivalent to the following linear program, which
we shall refer to as the full master program,

min
∑r
k=1 γkλk +

∑s
l=1 δlµl

subject to
∑r
k=1 P

kλk +
∑s
l=1Q

lµl = b,
∑r
k=1 λk = 1,

λk ≥ 0, k = 1, . . . , r ,

µl ≥ 0, l = 1, . . . , s

where γk = c · pk, P k = Apk, δl = c · ql , and
Ql = Aql . Because this linear program involves
only m + 1 linear constraints, the “efficiency and
numerical reliability” of the simplex method would
be preserved if, rather than dealing with the large-
scale system, we could simply work with this latter
problem. That is, if we do not take into account the
work of converting the constraints Tx = d, x ≥ 0
to their dual representation, and this could be a
horrendous task that, depending on the structure
of these constraints, could greatly exceed that
of solving the given problem. What makes the
Dantzig-Wolfe decomposition method a viable and
attractive approach is that, rather than generat-
ing the full master program, it generates only a
small, carefully selected subset of its columns,
namely, those that potentially could be included in
an optimal basis. Let us assume that, via a Phase I
type-procedure, a few columns of the (full) master
programhavebeengenerated,sayk= 1, . . . , rν < r ,
l = 1, . . . , sν < s, such that the resulting (reduced)

master program is feasible. Clearly, if this master
program is unbounded, so is the originally formu-
lated problem. So, let us assume that this problem
is bounded, and let (λν , µν) be an optimal solution
where λν = (λν1 , . . . , λ

ν
rν
) and µν = (µν1 , . . . , µ

ν
sν
)

with optimal value ζν . Letπν be the vector of mul-
tipliers attached to the first m linear constraints
and θν be the multiplier attached to the (m + 1)st
constraint

∑r
k=1 λk = 1. In sync with the (simplex

method) criterion to find an improved solution to
the full master problem, one could search for a
new column of type (γk, P

k,1), or of type (δl, Q
l,0),

with the property that γk − πν · P k − θν < 0
or δl − π

ν · Ql < 0. Equivalently, if the linear
subprogram

min (c −A⊤πν) · x subject toTx = d, x ≥ 0,

is unbounded, in which case the simplex method
would provide a direction of unboundedness ql ,
that would, in turn, give us a new column of type
(δl ,Q

l ,0) to be included in our master program. Or,
if this linear sub-program is bounded, the optimal
solutionpk generatedbythesimplexmethodwould
be a vertex of the polyhedral set

{

x ∈ IRn+
∣

∣Tx = d
}

.

As long as θν < (c − A⊤πν) · pk, a new column
of type (γk, P

k,1) would be included in the master
problem. On the other hand, if this last inequality
was not satisfied, it would indicate that no column
can be found that would enable us to improve the
optimal value of the problem, i.e.,

x∗ =

rν
∑

k=1

pkλνk +

sν
∑

l=1

qkµνl

is thentheoptimalsolutionofouroriginalproblem.
Clearly,themethodwillterminateinafinitenumber
of steps; the number of columns generated could
never exceed those in the full master program.

An interesting and particular application of this
methodology is to linearprogramswithvariable co-
efficients.The problemisone of the following form:

min

n
∑

j=1

cjxj subject to

n
∑

j=1

P jxj = Q, x ≥ 0,

where the vectors (cj , P
j) may be chosen from a

closed convex set Cj ⊂ IRm+1. If the sets Cj are
polyhedral, we essentially recover the method de-
scribed earlier, but in general, it leads to a method
for nonlinear convex programs that generates “in-
ternal” approximations, i.e., the feasible region,
say C, of our convex program is approximated by a
succession of polyhedral sets contained in C. The
strategy is much the same as that described earlier,
viz., one works with a master (problem) whose
columns are generated from the subproblems to
improve the succession of master solutions. For all
j, these subproblemsare of the following type:

min cj −π
ν · P j subject to (cj , P

j) ∈ Cj .

The efficiency of the method depends on how easy
or difficult it might be to minimize linear forms
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on the convex sets Cj ; the πν correspond to the
optimal multipliers associated with the linear con-
straintsof the masterproblem.Dantzigoutlinedan
elegant application of this method in “Linear con-
trol processes and mathematical programming”
[20].

In this period, Dantzig co-authored another
major contribution: a solution of a large (by the
standards of the day) Traveling Salesman Problem
(TSP). However, this work was considerably more
than just a way to find an optimum solution to a
particular problem. It pointed the way to several
approaches to combinatorial optimization and
integerprogrammingproblems.

First, the traveling salesman problem is to find
the shortest-distance way to go through a set of
cities so as to visit each city once and return to the
starting point. This problem was put on the com-
putational mathematical map by the now-famous
paper of Dantzig, Fulkerson, and Johnson [28]. It
has a footnote on the history of the problem that
includes Merrill Flood stimulating interest in the
problem, Hassler Whitney apparently lecturing on
it, and Harold Kuhn exploring the relation between
the TSP and linear programming. The abstract is
one sentence: “It is shown that a certain tour of
forty-nine cities, one in each of the forty-eight
states and Washington, D.C., has the shortest road
distance.” The distances were taken from a road
atlas. The authors reduce the problem to forty-two
cities by pointing out that their solution with seven
Northeastern cities deleted goes through those
sevencities. Thus the solution method is applied to
a 42-city problem.

The solution method involves solving the linear
program with a 0-1 variable for each link (the ter-
minology they use for undirected arcs) of the com-
plete graph on forty-two nodes. The first set of con-
straints says the sum of the variables on links inci-
denttoagivennodemustequaltwo.Thereareforty-
two of these constraints, for the 42-city problem.
The second set of constraints is made up of what
are called sub-tour elimination constraints. These
require that the sum of variables over links, with
oneendinasetS ofnodesandtheotherendnotinS,
must be greater-than-or-equal to two. There are of
order 242 of these constraints. However, they only
had to add seven of them to the linear program for
the 42-city problem at which point all the rest were
satisfied. So despite the fact that there are a huge
number of such constraints, only a few were used
when they were added on to the linear program as
needed.

On several occasions, George Dantzig spoke of
a bet he had with Ray Fulkerson. George was con-
vincedthatnotverymanysub-toureliminationcon-
straints would be needed, despite their large num-
ber. He was so convinced that he proposed a bet
that there would be no more than twelve (the ex-
act number is probably lost forever at this time),

but Ray, who was a good poker player, said the bet
should be the closest to the actual number and he
went lower, saying eleven. In actuality, only seven
were needed, plus two more that were presented
as being somewhat ad hoc but needed to make the
linear programmingoptimum be integer-valued.

The two additional inequalities are briefly jus-
tified and are acknowledged in a footnote, “We are
indebtedto I.GlicksbergofRandforpointingoutre-
lationsofthiskindtous.”Muchofthe later research
in combinatorial optimization is directed at find-
ing such inequalities that can be quickly identified,
when violated. For example, finding a violated sub-
tour elimination constraint is equivalent to finding
a “minimum cut” in the graph where the weights on
the arcs are the primal variables xij , which may be
fractional. The min cut is the one that minimizes
that sum ofxij over all edges in the cut; that value is
then compared to 2.

The method used is to start with a tour, which
can be found by any one of several heuristics. Dual
variables on the nodes can then be found, and the
paper explains how. Then, non-basic arcs can be
priced out and a basis change found. If the solution
moves to another tour, then the step is repeated. If
it moves to a sub-tour, then a sub-tour elimination
constraint is added. If it moves to a fractional solu-
tion, then they look for a constraint to add that goes
through the current solution vector and cuts off
the fractional solution. Thus, it is an integer-primal
simplex method, a primal simplex method that
staysat integer points by addingcuts as needed.

A device the paper employs is the use of
“reduced-cost fixing” of variables. Once a good
tour is found and an optimum linear program em-
ploying valid cuts, such as sub-tour elimination
cuts, the difference between the tour cost and the
linear program optimum provides a value that can
be used to fix non-basic variables at their current
non-basic values. Although the number of vari-
ables is not enormous, the 42-city problem has 861
variables, which is a lot if one is solving the linear
program by hand, as they did. They were using the
revised simplex method so only needed to price
out all these columns and enter the best one. Thus,
even though the revised simplex method only has
to price out over the columns, the process can be
onerouswhenthereare861variablesandcomputa-
tion is being done by hand. For that reason, actually
droppingmanyofthesevariables fromtheproblem
had a real advantage.

The paper also refers to a “combinatorial ap-
proach” which depends critically on reducing the
number of variables. This approach seems to be
related to the reduced-cost fixing referred to above.
Although the paper is a bit sketchy about this
approach, it seems to be that as the variables are
reduced to a small number, some enumeration
without re-solving the linear program (but perhaps
using the reduced-cost fixing) is required. In this
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way, the options left open can be evaluated and the
optimum solution identified.

According to Bland and Orlin [5], “Newsweek
magazine ran a story on this ‘ingenious application
of linear programming’ in the 26 July 1954 issue.”
However, it is highly unlikely that even Dantzig,
Fulkerson, and Johnson could have anticipated
then the practical impact that this work would ul-
timately have.” This impact has been felt in integer
programming generally where strong linear pro-
gramming formulations are much used. One could
say that the general method of finding violated,
combinatorially derived cutting planes was intro-
duced in this paper. Dantzig was personally firmly
convinced that linear programming was a valuable
tool in solving integer programming problems,
even hard problems such as the TSP. Practically all
of the successful, recent work that has accepted
the challenge of solving larger and larger TSPs has
been based on the Dantzig, Fulkerson, Johnson
approach.

Another contribution of Dantzig in combina-
torial optimization is the work based on network
flow. Ray Fulkerson and Alan Hoffman were two of
his collaborators and co-authors. The crucial ob-
servation is that this class of linear programs gives
integer basic solutions when the right-hand side
and bounds are all integers, so the integer program
is solved by the simplex method. In addition, the
dual is integer when the costs are integer. In partic-
ular the duality theorem provides a proof of several
combinatorial optimization results, sometimes
referred to as “min-max theorems”. An example of
a rather complex application of this min-max theo-
rem is the proof of Dilworth’s theorem by Dantzig
and Hoffman. This theorem says that for a partial
order, the minimum number of chains covering
all elements is equal to the maximum number of
pair-wise unrelated elements.

Ofcourse,George Dantzigwasalways interested
in applications, and developed a rich set of integer
programming applications. One of these is what is
called today the “fleet assignment model”. Current
models for this problem are much used in airline
planning. As the problems’ sizes grow and more
details are included in the models, computational
challenges abound; nevertheless this model has
generally proven to be quite tractable despite being
a large, mixed-integer program. In fact, the second
of the two papers [50] on this subject was an early
example ofa stochastic integerprogrammingprob-
lem. The problem is to allocate aircraft to routes
for a given number of aircraft and routes. The main
purpose of the problem is to maximize net revenue
by routing the larger aircraft over flights that have
more demand or by using more aircraft on such
routes. The stochastic version of the problem has
simple recourse, i.e., leave empty seats or leave
demand unsatisfied depending on the realized
demand.

A related problem was posed as finding the min-

imum number of tankers to cover a schedule. This
is used today for example by charter airline com-
panies to cover required flights by the minimum

number of aircraft. The schedule of required flights
in a charter operation is typically unbalanced re-

quiring ferryflights, ordeadheadflights, inorder to
cover the required flights. Dantzig and Fulkerson
[27] modeled this as a network flow problem. With

morethantheminimumnumberofplanes, the total
deadheading distance may be reduced by allowing
more than the minimum number of planes.

A notable application paper [34] by G. B. Dantzig
and J. H. Ramser introduced what is now called the
Vehicle Routing Problem (VRP), an area that has its

ownextensive literature andsolutionmethods.The
problem is a generalization of the TSP having many
variations. As put by Toth and Vigo [80, p. xvii],

the VRP “calls for the determination of the optimal
set of routes to be performed by a fleet of vehicles

to serve a given set of customers, and it is one of
the most important, and studied, combinatorial
optimization problems. More than forty years have

elapsed since Dantzig and Ramser introduced the
problem in 1959.”

In addition to these contributions to network

optimization problems, we must also mention
Dantzig’s article [18] pointing out the rich set
of problems that can be modeled as integer pro-

grams.Thispapermotivatedcomputationalefforts
such as cutting plane methods, enumeration, and
branch-and-bound to effectively solve these di-

verse problems.These efforts have continued up to
today.

Dantzig often referred to stochastic program-

ming as the “real problem”. He was very well aware
that almost all important decision problems are

decision-making problems under uncertainty, i.e.,
where at least some of the parameters are at best
known in a statistical sense, and sometimes not

even reliable statistical information is available.
His serious commitment to this class of problems
dates from the middle 1950s. As in many other

instances, the “spark” probably came from an ap-
plication, in this case allocating aircraft to routes
under uncertain demand. That problem was the

concern of Alan Ferguson, one of his colleagues at
RAND[49].After theydevisedanelegantprocedure
to solve this particular problem, Dantzig returned

to his desk and wrote a fundamental paper that
not only introduced the fundamental stochastic
programmingmodel, knowntodayas the stochastic

program with recourse, butalsostartedderiving its
basic properties. This certainly reaffirmed the need

to deal efficiently with large-scale mathematical
programs.

With only a slight reformulation, Dantzig’s

model was

min c · x+ E{Q(ξ, x)} subject to Ax = b, x ≥ 0,
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whereE{·}denotes the taking of expectation, and

Q(ξ, x) = inf
{

q · y
∣

∣Wy = ξ − Tx, y ≥ 0
}

;

hereξ isa randomvectorwithvaluesξ inΞ ⊂ IRd ; an
extensionofthemodelwouldallowforrandomness
in the parameters (q,W, T), in addition to just the
right-hand sides, defining the function Q(·, x). He
proved that in fact this is a well defined convex op-
timization problem, placing no restrictions on the
distribution of the random elements, but requiring
that the problemdefiningQbe solvable forallxand
ξ ∈ Ξ, the complete recourse condition as it is now
called. This means that stochastic programs with
recourse, although generally not linear programs,
fall intothenext“nice”class,viz., convexprograms.
However, if the random vectorξ has finite support,
say Ξ =

{

ξl , l = 1, . . . , L
}

with prob{ξ = ξl} = pl ,
or the discretization comes about as an approxi-
mation to a problem whose random components
are continuouslydistributed, the solutionx∗ canbe
found by solving the large-scale linear program:

min c · x+
∑L
l=1 pl q · y

l

subject to Ax = b

Tx+Wy l = ξl, l = 1, . . . , L

x ≥ 0, y l ≥ 0, l = 1, . . . , L

“large”,ofcourse,dependingonthesizeofL. Just to
render this a little bit more tangible, assume that ξ
consistsof ten independentrandomvariables, each
taking on ten possible values; then this linear pro-
gram comes with at least 1011 linear constraints—
the 1010 possible realizations of the random vector
ξ generating 1010 systems of 10 linear equations—
certainly, a daunting task! To the rescue came (i)
the Dantzig-Wolfe decomposition method and (ii)
Dantzig’s statistical apprenticeship.

It is pretty straightforward that, up to a sign
change in the objective, the dual of the preceding
problemcan be expressedas

min b · σ +
∑L
l=1 pl ξ

l ·π l

subject to A⊤σ +
∑L
l=1 plT

⊤π l ≤ c,

W⊤π l ≤ q, l = 1, . . . ;L,

i.e., a problem with a few linking constraints and
a subproblem that can, itself, be decomposed
into L relatively small (separable) subproblems.
The Dantzig-Wolfe decomposition method was
perfectly adapted to a structured problem of this
type, and this was exploited and explained in [31].
Still, this elegant approach required, at each major
iteration, solving (repeatedly) a huge number of
“standard” linear programs. And this is how the
idea of solving just a sampled number of these
subproblems came to the fore. Of course, one could
no longer be certain that the absolute optimal so-
lution would be attained, but statisticians know
how to deal with this. Dantzig, Glynn, and Infanger
[29, 30] relied on the Student-t test to evaluate the

reliability of the solutions so obtained. They also

proposed a scheme based on importance sampling

that reducessample variance.

It would be misleading to measure the role

Dantzig played in this field in terms of just his
publications, even taking into account that he was

responsible for the seminal work. All along, he en-

couraged students, associates, colleagues, as well

as anybody who would listen, to enter the field, and
gave them his full support. He saw the need to deal

with the computational challenges, but his major

interestseemedto lie inbuildingmodels thatwould

impact policy-making in areas that would signifi-

cantly benefit society on a global scale. The “PILOT”
project [33] provides an example such an effort.

Another is his continued active involvement with

the International InstituteofAppliedSystemsAnal-

ysis (IIASA) in Laxenburg (Austria) whose mission
is to conduct inter-disciplinary scientific studies

on environmental, economic, technological, and

social issues in the contextofhumandimensionsof

global change.

Dantzig at Berkeley
George Dantzig left RAND in 1960 to join the fac-

ulty of the University of California in Berkeley; he

accepted a post as professor in the Department of

Industrial Engineering. Established just four years
earlier as a full-fledged department, Industrial En-

gineering was chaired from 1960 to 1964 by Ronald

W. Shephard who, like Dantzig, was born in Port-

land, Oregon, and had done his doctoral studies

under Jerzy Neyman at Berkeley. Asked why he left
RANDtoreturn to the academicworld,Dantzig told

Albers and Reid in their 1984 interview, “My leaving

had to do with the way we teamed up to do our re-

search. . . . Each of us got busy doing his own thing.
. . . There were no new people being hired to work

with us as disciples. . . . My stimulus comes from

studentsandworkingcloselywithresearcherselse-

where” [1, p. 311]. As it turned out, he had disciples

aplenty at Berkeley (and later at Stanford).
By 1960 Operations Research was well on its way

to becoming a separate (albeit interdisciplinary)

field of study having natural ties to mathematics,

statistics, computer science, economics, business
administration, and some of the more traditional

branches of engineering. Dantzig (and Shephard)

founded the Operations Research Center (ORC)

which coordinated teaching and research in a range

of OR topics. For several years, the ORC was incon-
veniently situated in a small, shabby wood-frame

house at the university’s Richmond Field Station,

somesixmiles fromthemaincampus.Nevertheless

the ORC managed to attract an enthusiastic group

of faculty and students who investigated a range
of OR themes. Dantzig’s research program was

certainly the largest at the ORC—and possibly the

largest in the IE Department for that matter.
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The research Dantzig began at RAND on com-

pact basis techniques for large-scale linear pro-

grams led, at Berkeley, to the development of the

Generalized Upper Bound Technique (GUB). The

motivation came from a problem that Dantzig en-

countered while consulting for the Zellerbach Co.,

now the Crown Zellerbach Co. Rather than simple

lower/upper bound constraints, them linking con-

straints Ax = b and nonnegativity restrictions are

augmented by a collection of L linear constraints

withpositiveright-handsidesandthepropertythat

every variable appears at most in one of these con-

straintsandthen,withapositivecoefficient. Intheir

paper, Dantzig and Van Slyke [38] show that the

optimal solution of a problem of this type has the

followingproperties: (i) fromanygroupofvariables

associated with one of these L constraints, at least

one of these variables must be basic and (ii) among

these L equations, the number of those ending up

with two or more basic variables is at mostm − 1.

These properties were exploited to show that with

an appropriate modification of the pivoting rules

of the standard simplex method and some creative

bookkeeping, one can essentially proceed to solve

the problem as if it involved only m linear con-

straints. Again, a situation when a compact basis

will suffice, and this resulting in much improved

efficiency and numerical reliability of the method.

Dantzig offered graduate courses in linear and

nonlinear programming in addition to a course in

network flows. These were given at a time when

his Linear Programming and Extensions and the

classic work Flows in Networks by Ford and Fulk-

erson were still in one stage of incompleteness or

another. At best, some galley proofs were available,

but photocopy equipment was then in its infancy

(and was a wet process at that). A while later, a

corps of Dantzig’s students were called upon to

proofread and learn from LP&E. The richness of

the subject augmented by Dantzig’s vast store of

interesting research problems gave his doctoral

students tremendous opportunities for disserta-

tiontopicsandtheresources tocarrythemout.This

included exposure to stacks of technical reports,

introductions to distinguished visitors at the ORC,

and support for travel to important professional

meetings.

Over his six-year period at Berkeley, Dantzig

supervised eleven doctoral theses including those

written by the authors of the present article. The

types of mathematical programming in the disser-

tations supervised by Dantzig include large-scale

linear programming, linear programming under

uncertainty, integer programming, and nonlinear

programming. A development that evolved from

thelattersubject (afewyears later)cametobecalled

complementarity theory, that is, the study of com-

plementarity problems. These are fundamental

inequality systems of the form

(5) F(x) ≥ 0, x ≥ 0, x · F(x) = 0.

Besides thesis supervision and book writing, Dant-
zig busied himself with applied research in the life
sciences, large-scaleLP,andabitofworkonoptimal
controlproblems.Withall this,headded“educator”
to his large reputation.

Dantzig at Stanford
Dantzig left UC Berkeley in 1966 to join the Com-
puter Science Department and the Program in
Operations Research at Stanford University. Al-
ways reluctant to discuss his motivation for the
switch,DantzigusedtoquipthatORprogramchair-
man, Gerald J. Lieberman, promised him a parking
place adjacent to the office. This arrangement did
not survive the relocation of the department to
other quarters, but Dantzig remained at Stanford
anyway.

Since its creation in 1962, the OR program had
beenauthorized togrant the Ph.D. andwasan inter-
school academic unit reporting to three deans and
six departments. Fortunately, this cumbersome ar-
rangement changed in 1967, at which time Opera-
tions Research became a regular department in the
SchoolofEngineering.Dantzigretainedhis jointap-
pointment the CS Department, but his principal ac-
tivity was based in OR. Berkeley followed a slightly
different route; in 1966, the IE Department became
theDepartmentofIndustrialEngineeringandOper-
ations Research. But with Dantzig now at Stanford,
the West Coast center of gravity for mathematical
programmingshifted southward.

One of those recruited to the OR faculty was R.
W. Cottle who had been Dantzig’s student at Berke-
ley.Together, theyproduceda fewpapersontheso-
called linear complementarity problem, that being
the case where the mapping F in (5) is affine. One of
these, “ComplementaryPivotTheoryofMathemati-
cal Programming”had a considerable readership in
the OR field and became something of a classic.

George Dantzig had a knack for planning but
harbored little interest in organizational politics or
administrative detail. Even so, he began his tenure
at Stanford by serving as president of The Institute
of Management Sciences (TIMS). In 1968 he and A.
F. Veinott Jr. co-directed (and co-edited the pro-
ceedings of) a very successful five-week “Summer
Seminar on the Mathematics of the Decision Sci-
ences” sponsored by the AMS. He followed this by
directing in 1971 the “Conference on Applications
of Optimization Methods for Large-Scale Resource
Allocation Problems” held in Elsinore, Denmark,
under the sponsorship of NATO’s Scientific Affairs
Division. Still later he was program chairman of
the “8th International Symposium on Mathematical
Programming”,which was held at Stanford in 1973.
That year he became the first chairman of the newly
established Mathematical Programming Society.
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On top of these “distractions”, Dantzig concen-
tratedonmathematicalprogrammingresearch, the
supervision of doctoral students, and the orches-
tration of proposal writing so essential to securing
its external sponsorship.

Dantzig’s leadership and the addition of other
faculty and staff contributed greatly to the inter-
national stature of the Stanford OR Department.
Among Dantzig’s many ventures during this pe-
riod, the Systems Optimization Laboratory (SOL)
stands out as one of the most influential and endur-
ing. At the 1971 Elsinore Conference mentioned
above, Dantzig discoursed “On the Need for a Sys-
tems Optimization Laboratory”. A year later, he
(and a host of co-authors) put forward another
version of this concept at an Advanced Seminar on
Mathematical Programming at Madison, Wiscon-
sin. As Dantzig put it, the purpose of an SOL was to
develop “computational methods and associated
computer routines for numerical analysis and opti-
mization of large-scale systems”. By 1973 Stanford

Left to right:
T. C. Koopmans, G. B. Dantzig,

L. V. Kantorovitch, 1975

had its SOL with Dantzig
as director. For many
years, the SOL was
blessedwithanoutstand-
ing resident research
staff consisting of Philip
Gill, Walter Murray,
Michael Saunders, John
Tomlin, and Margaret
Wright. The research and
software output of the
latter group is world fa-
mous. Numerous faculty
and students rounded
out the laboratory’s
personnel. Over time,
Dantzig’s concept of an
SOL would be emulated
at about twenty other
institutions.

While bringing the SOL
to fruition, Dantzig col-

laborated with T. L. Saaty on another altogether
differentsortofproject: abookcalledCompact City
[35],whichproposesaplanfora liveableurbanenvi-
ronment. The multi-story city was to be cylindrical
in shape (thereby making use of the vertical dimen-
sion)andwasintendedtooperateona24-hourbasis
(thereby making better use of facilities). Although
the main idea of this publication does not appear to
have been implemented anywhere, the book itself
has beentranslated into Japanese.

During the academic year of 1973–74, Dantzig
spent his sabbatical leave at the International Insti-
tute for Applied Systems Analysis (IIASA). Located
in Laxenburg, Austria, IIASA was then about one
year old. IIASA scientists worked on problems of
energy, ecology, water resources, and methodol-
ogy. Dantzig headed the Methodology Group and

in so doing established a long association with this
institute.

Another memorable feature of 1973 was the
well-known mideast oil crisis. This event may have
been what triggered Dantzig’s interest in energy-
economic modeling. By 1975 this interest evolved
intosomethinghecalledthePILOTModel, apassion
that was to occupy him and a small group of SOL
workersuntil the late1980s. (“PILOT” isanacronym
for “Planning Investment Levels Over Time”.) As
Dantzig, McAllister, and Stone explain [32], PILOT
aims “to assess the impact of old and proposednew
technologies on the growth of the U.S. economy,
and how the state of the economy and economic
policy may affect the pace at which innovation
and modernization proceeds.” The PILOT project
provided a context combining three streams of
research that greatly interested Dantzig: modeling
of a highly relevant economic issue, large-scale
programming methodology, and the computation
of optimal solutions or the solutions of economic
equilibrium (complementarity) problems.

The year 1975 brought a mix of tidings to
Dantzig and the mathematical programming com-
munity. The 1975 Nobel Prize in Economics went
to Kantorovich and Koopmans “for their contri-
butions to the theory of the optimum allocation of
resources.”Totheshockanddismayofaworldwide
body of well-wishers (including the recipients),
George Dantzig was not selected for this distin-
guishedaward. Intheirprizespeeches,Kantorovich
and Koopmans recognized the independent work
of Dantzig; Koopmans felt so strongly about the
omission that he donated a third of his prize money
to IIASA in Dantzig’s honor.

But on a happier note, that same year George
Dantzig received the prestigious National Medal
of Science from President Gerald Ford, the John
von Neumann Theory Prize from ORSA and TIMS,
and membership in the American Academy of Arts
and Sciences. He had, in 1971, already become a
member of the National Academy of Sciences and,
indeed, would become, in 1985, member of the Na-
tional Academy of Engineering. Over his lifetime,
many other awards and eight honorary doctorates
were conferred on Dantzig. Beginining in 1970, he
was listed on the editorial boards of twenty-two
different journals.

As a colleague and as a mentor, George Dantzig
was a remarkable asset. That he had broad knowl-
edge of the mathematical programming field and
a wealth of experience with the uses of its method-
ology on practical problems goes without saying.
What also made him so valuable is that he was
a very patient and attentive listener and would
always have a response to whatever was told him.
The response was invariably a cogent observation
or a valuable suggestion that would advance the
discussion.Asa professoratStanford,Dantzigpro-
duced forty-one doctoral students. The subjects of
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their theses illustrates the range of his interests.

The distribution goes about like this: large-scale
linear programming (8), stochastic programming

(6), combinatorial optimization (4), nonlinear pro-
gramming (4), continuous linear programming (3),

networks and graphs (3), complementarity and
computation of economic equilibria (2), dynamic

linear and nonlinear programming (2), probabil-

ity (2), other (7). The skillful supervision Dantzig
brought to the dissertation work of these students

and the energy they subsequently conveyed to
the operations research community shows how

effective his earlier plan to have disciples really
turned out to be. A nearly accurate version of

Dantzig’s “academic family tree” can be found at
http://www.genealogy.ams.org/.

Retirement
George Dantzig became an emeritus professor in

1985, though not willingly. He was “recalled to
duty” and continued his teaching and research for

another thirteen years. It was during this period
that Dantzig’s long-standing interest in stochastic

optimization got even stronger. In 1989 a young
Austrian scholar named Gerd Infanger came to

the OR Department as a visitor under the aegis of
George Dantzig. Infanger’s doctorate at the Vienna

Technical University was concerned with energy,
economics, and operations research. He expected

to continue in that vein working toward his Habili-
tation. Dantzig lured him into the ongoing research

program on stochastic optimization which, as he
believed, is “where the real problems are.” So began

a new collaboration. During the 1990s, Dantzig and
Infanger co-authored seven papers reporting on

powerfulmethods forsolvingstochasticprograms.
Moreover, Infanger obtained his Habilitation in

1993.
Dantzig also established another collaboration

around this time. Having decided that much prog-
ress had been made since the publication of LP&E

in 1963, he teamed up with Mukund Thapa to write
a new book that would bring his LP&E more up to

date. They completed two volumes [36] and [37] be-
fore Dantzig’s health went into steep decline (early

2005), leaving two more projected volumes in an
incomplete state.

Dantzig’s Mathematical Impact
It will not be possible to give a full account of the

mathematical impact of Dantzig’s work, some of
which is still ongoing. Instead, we focus on a few

key points.
Before the1950s,dealingwithsystems involving

linear—and a fortiori nonlinear—inequalities was
of limited scope. This is not to make light of the

pioneering work of Fourier, Monge, Minkowski,
the 1930s-Vienna School, and others, but the fact

remains that up to the 1950s, this area was in

the domain of an exclusive, albeit highly com-
petent, club of mathematicians and associated
economists, with little or no impact in the “practi-
cal” world. Dantzig’s development of the simplex
method changed all that. Perhaps his greatest
contribution was to demonstrate that one could
deal (effectively) with problems involving inequal-
ity constraints. His focus and his determination
inspired a breakthrough that created a new mathe-
matical paradigm which by now has flourished in a
myriad of directions.

Left to right: George Dantzig, Anne Dantzig,
President Gerald Ford (National Medal of Honor
ceremony, 1971).

Quickly, practitioners ranging from engineers,
managers,manufacturers,agriculturaleconomists,
ecologists, schedulers, and so on, saw the potential
of using linear programming models now that such
models came with an efficient solution procedure.
In mathematical circles, it acted as a watershed. It
encouragedandinspiredmathematiciansandafew
computer scientists to study a so-far-untouched
class of problems, not just from a computational
but also from a theoretical viewpoint.

On the computational front, it suffices to visit a
site like the NEOS Server for Optimization
http://www-neos.mcs.anl.gov/ to get a
glimpse at the richness of the methods, now widely
available, to solve optimizations problems and re-
lated variational problems: equilibrium problems,
variational inequalities, cooperative and non-
cooperative games, complementarity problems,
optimal control problems, etc.

On the theoretical front, instead of the classical
framework for analysis that essentially restricted
functions and mappings to those defined on open
sets or differentiable manifolds, a new paradigm
emerged. It liberated mathematical objects from
this classical framework. A comprehensive theory
was developed that could deal with functions that
are not necessarily differentiable, not even con-
tinuous, and whose domains could be closed sets
or manifolds that, at best, had some Lipschitzian
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properties. This has brought about new notions

of (sub)derivatives that can be be used effectively

to characterize critical points in situations where

classical analysis could not contribute any in-

sight. It created a brand new approximation theory

where the classical workhorse of pointwise limits

is replaced by that of set limits; they enter the pic-

ture because of the intrinsic one-sided (unilateral)

nature of the mathematical objects of interest.

The study of integral functionals was also given

some solid mathematical foundations, and much

progresswasachieved insolvingproblems thathad

puzzled us for a very long time.

Although we could go much further in this di-

rection, we conclude with one shining example.

The study of (convex) polyhedral sets was imme-

diately revived once Dantzig’s simplex method

gained some foothold in the mathematical com-

munity. At the outset, in the 1950s, it was led

by a Princeton team under the leadership of A.

W. Tucker. But quickly, it took on a wider scope

spurred by the Hirsch conjecture: Given a linear

program in standard form, i.e., with the description

of the feasible polyhedral set as S = IRn+ ∩M where

the affine set M is determined by m (not redun-

dant) linear equations, the conjecture was that it is

possible to pass from any vertex of S to any other

one via a feasible path consisting of no more than

m − 1 edges, or in simplex method parlance, a path

requiring no more than m (feasible) pivot steps.

This question went to the core of the efficiency of

the simplex method. The conjecture turned out to

be incorrect, at least as formulated, when m > 4,

but it led to intensive and extensive research asso-

ciated with the names of Victor Klee, David Walkup,

Branko Grünbaum, David Gale, Micha Perlis, Peter

McMullen,GilKalai,DanielKleitman,amongothers,

that explored the geometry and the combinatorial

properties of polyhedral sets. Notwithstanding its

actual performance in the field, it was eventually

shown that examples could be created, so that the

simplex method would visit every vertex of such

a polyhedral set S having a maximal number of

vertexes. The efficiency question then turned to

research on the “expected” number of steps; partial

answers to this question being provided, in the

early 1980s, by K. H. Borgwardt [6] and S. Smale

[77]. An estimate of the importance attached to this

subject area, can be gleaned from Smale’s 1998 ar-

ticle [78] in which he states eighteen “mathematical

problems for the next century”. Problem 9 in this

groupasks the question: Is there a polynomial-time

algorithm over the real numbers which decides

the feasibility of the linear system of inequalities

Ax ≥ b? (This decision version of the problem rests

onduality theory for linearprogramming.) Problem

9 asks for an algorithm given by a real number

machine with time being measured by the number

of arithmetic operations.

Epilogue
George Dantzig had a fertile mind and was passion-
ately dedicated to his work throughout his adult
life. Although his career began with an interest
in mathematical statistics, circumstances guided
him to becoming a progenitor of mathematical
programming (or optimization). In creating the
simplex method, he gave the world what was later
to be hailed as one of “the top 10 algorithms” of
the twentieth century [44]. A selection of Dantzig’s
researchoutput appears in the anthology [10].

Dantzig built his life around mathematical
programming, but not to the exclusion of col-
leagues around the world. Through his activities he
touched the lives of a vast number of mathemati-
cians,computerscientists,statisticians,operations
researchers, engineers, and applied scientists of
all sorts. Many of these individuals benefited from
their bonds of friendship with him. Dantzig’s nat-
ural warmth engendered a strong sense of loyalty,
and he returned it in full.

Many of Dantzig’s major birthdays were cele-
brated by conferences, banquets, Festschrifts, and
the like. Even the simplex method had a fiftieth
birthday party in 1997 at the 16th International
Symposium on Mathematical Programming (ISMP)
held in Lausanne, Switzerland. In the year 2000,
George Dantzig was honored as a founder of the
field at the 17th ISMP in Atlanta, Georgia. Perhaps
the most touching of all the festivities and tributes
in Dantzig’s honor was the conference and banquet
held in November 2004. He had turned ninety just
a few days earlier. In attendance were colleagues
from the past and present, former students of
Dantzig, and current students of the department.
To everyone’s delight, he was in rare form for a
man of his age; moreover, he seemed to relish the
entire event. Sadly, though, within two months, his
health took a serious turn for the worse, and on the
following May 13th (a Friday), he passedaway.

George B. Dantzig earned an enduring place
in the history of mathematics. He will be warmly
remembered for years to come by those who were
privileged to know him. By some he will be known
only through his work and its impact, far into the
future. In part, this will be ensured by the creation
of the Dantzig Prize jointly by the Mathematical
Programming Society and the Society for Indus-
trial and Applied Mathematics (1982), the Dantzig
Dissertation Award by INFORMS (1994), and an
endowed Dantzig Operations Research fellowship
in the Department of Management Science and
Engineering at Stanford University (2006).
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