Math 14
Winter 2009
Monday, January 26
Special Homework III

This week's special homework is about the formula for arc length; the same ideas apply to the formula for a path integral in general.

Suppose γ is a smooth curve parametrized by the function $\vec{r}(t)$ for $a \leq$ $t \leq b$, and $\frac{d \vec{r}}{d t}$ is continuous on an open interval containing the closed interval $[a, b]$.

We said that if we take a small enough time interval Δt, the portion of the curve γ between $\vec{r}(t)$ and $\vec{r}(t+\Delta)$ should be almost straight. Therefore, we said, we should be able to approximate the arc length of γ in the following way: For some large n, divide the time interval [a.b] into n-many equal subintervals of length $\Delta t=\frac{b-a}{n}$, with the endpoints of the subdivision being $t_{0}=a, t_{1}=a+\Delta t, t_{2}=a+2 \Delta t, \ldots, t_{n}=a+n \Delta t=b$. Then we approximate the arc length of the portion of the curve between $\vec{r}\left(t_{i-1}\right)$ and $\vec{r}\left(t_{i}\right)$ by the straight line distance between those two points,

$$
(\text { arclength })_{i} \approx\left|\vec{r}\left(t_{i}\right)-\vec{r}\left(t_{i-1}\right)\right|=\left|\vec{r}\left(t_{i-1}+\Delta t\right)-\vec{r}\left(t_{i-1}\right)\right|
$$

and approximate the entire arc length of γ by

$$
S(n)=\sum_{i=1}^{n}\left|\vec{r}\left(t_{i}\right)-\vec{r}\left(t_{i-1}\right)\right| .
$$

Finally, we said the arc length of γ should be

$$
\lim _{n \rightarrow \infty} S(n)
$$

We further said that, if $\frac{d \vec{r}}{d t}$ represents velocity, and therefore $\left|\frac{d \vec{r}}{d t}\right|$ represents speed, then over a small interval from t to $t+\Delta t$, the direction of travel and the speed should not change very much, and so the distance traveled should be more or less the speed at time t times the elapsed time Δt, or
$\left|\frac{d \vec{r}}{d t}(t)\right| \Delta t$. Therefore, we said that, if we divide the time interval $[a . b]$ into n-many equal subintervals as before, we should have, for each i,

$$
\left|\vec{r}\left(t_{i}\right)-\vec{r}\left(t_{i-1}\right)\right|=\left|\vec{r}\left(t_{i-1}+\Delta t\right)-\vec{r}\left(t_{i-1}\right)\right| \approx(\text { arclength })_{i} \approx\left|\frac{d \vec{r}}{d t}\left(t_{i-1}\right)\right| \Delta t
$$

and we then concluded that we should have

$$
R(n)=\sum_{i=1}^{n}\left|\frac{d \vec{r}}{d t}\left(t_{i-1}\right)\right| \Delta t \approx \sum_{i=1}^{n}\left|\vec{r}\left(t_{i}\right)-\vec{r}\left(t_{i-1}\right)\right|=S(n),
$$

and finally that

$$
\lim _{n \rightarrow \infty} S(n)=\lim _{n \rightarrow \infty} R(n)=\int_{a}^{b}\left|\frac{d \vec{r}}{d t}(t)\right| d t
$$

There is a gap in this reasoning. It is not hard to see that, for a fixed t, as n gets larger and larger, the difference between $|\vec{r}(t+\Delta t)-\vec{r}(t)|$ and $\left|\frac{d \vec{r}}{d t}(t)\right| \Delta t$ gets smaller and smaller, because $\frac{d \vec{r}}{d t}(t)$ is just the limit as $\Delta t \rightarrow 0$ of $\frac{\vec{r}(t+\Delta t)-\vec{r}(t)}{\Delta t}$. However, even if the difference between the terms we are adding up gets smaller and smaller, the number of terms we are adding up to get $S(n)$ and $R(n)$ is getting larger and larger, so it is not obvious that the sums are getting closer and closer together.

To fill this gap we need one additional fact. Recall that by

$$
\frac{d \vec{r}}{d t}(t)=\lim _{\Delta t \rightarrow 0} \frac{\vec{r}(t+\Delta t)-\vec{r}(t)}{\Delta t}
$$

we mean that, for every t, for every $\epsilon>0$, there is a $\delta>0$ such that, whenever we have $0<|\Delta t|<\delta$, then

$$
\left|\frac{\vec{r}(t+\Delta t)-\vec{r}(t)}{\Delta t}-\frac{d \vec{r}}{d t}(t)\right|<\epsilon
$$

The value of ϵ may depend on the values of δ and t. However, given that $\frac{d \vec{r}}{d t}$ is continuous on an open interval containing the closed interval $[a, b]$, we can assume that we can choose ϵ in such a way that its value depends only on the value of δ and NOT on the value of t :
${ }^{(* *)}$ For every $\delta>0$, there is an $\epsilon>0$ such that, for every $t \in[a, b]$, whenever we have $0<|\Delta t|<\delta$, then

$$
\left|\frac{\vec{r}(t+\Delta t)-\vec{r}(t)}{\Delta t}-\frac{d \vec{r}}{d t}(t)\right|<\epsilon
$$

Assignment: Prove the following propositions:
Proposition 1: Under the given assumptions, including $\left({ }^{* *}\right)$, for every $\epsilon>0$, there is an N large enough so that, for every $n>N$ and every i between 1 and n, we have

$$
\left|\left|\vec{r}\left(t_{i-1}+\Delta t\right)-\vec{r}\left(t_{i-1}\right)\right|-\left|\frac{d \vec{r}}{d t}\left(t_{i-1}\right)\right| \Delta t\right|<\epsilon \Delta t
$$

Hint for Proposition 1: First argue that, in general, if $|\vec{b}-\vec{a}|<\epsilon$ then $||\vec{b}|-|\vec{a}||<\epsilon$.

Proposition 2: Under the given assumptions, for every $\epsilon^{*}>0$ there is an N^{*} large enough so that, for every $n>N^{*}$,

$$
|S(n)-R(n)|<\epsilon^{*}
$$

Hint for Proposition 2: Apply Proposition 1 with $\epsilon=\frac{\epsilon^{*}}{b-a}$.

