Math 14
Winter 2009
Monday, January 5
Special Homework II

We defined a function $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ to be differentiable at the point $\vec{a} \in \mathbb{R}_{n}$ if there is an affine function

$$
A(\vec{x})=T(\vec{x}-\vec{a})+\vec{b}
$$

whose graph is tangent to the graph of F at $\vec{x}=\vec{a}$. Here T is an $n \times m$ matrix with constant entries, $(\vec{x}-\vec{a})$ is written as a column vector with m entries, and \vec{b} is a column vector with n entries.

If this is the case, we set $F^{\prime}(\vec{a})=T$.
We defined the graphs of A and F to be tangent at $\vec{x}=\vec{a}$ provided:

1. $A(\vec{a})=F(\vec{a})$;
2. $\lim _{\vec{x} \rightarrow \vec{a}} \frac{F(\vec{x})-A(\vec{x})}{|\vec{x}-\vec{a}|}=\overrightarrow{0}$.

Clearly if the graph of $A(\vec{x})=T(\vec{x}-\vec{a})+\vec{b}$ is tangent to the graph of F at $\vec{x}=\vec{a}$, then by condition (1) we must have $\vec{b}=\vec{F}(\vec{a})$. Hence we have

$$
A(\vec{x})=T(\vec{x}-\vec{a})+\vec{b}=F^{\prime}(\vec{a})(\vec{x}-\vec{a})+F(\vec{a}) .
$$

Assignment: Suppose that the graphs of $F(x, y)=\left\langle F_{1}(x, y), F_{2}(x, y), F_{3}(x, y)\right\rangle$ and

$$
A(x, y)=\left(\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22} \\
t_{31} & t_{32}
\end{array}\right)\binom{x-a_{1}}{x-a_{2}}+\left(\begin{array}{l}
F_{1}\left(a_{1}, a_{2}\right) \\
F_{2}\left(a_{1}, a_{2}\right) \\
F_{3}\left(a_{1}, a_{2}\right)
\end{array}\right)
$$

are tangent at the point $(x, y)=\left(a_{2}, a_{2}\right)$. Show that

$$
t_{21}=\frac{\partial F_{2}}{\partial x}\left(a_{1}, a_{2}\right)=\lim _{x \rightarrow a_{1}} \frac{F_{2}\left(x, a_{2}\right)-F_{2}\left(a_{1}, a_{2}\right)}{x-a_{1}} .
$$

Use the $\varepsilon-\delta$ definition of limit.

Hint: Try this and then come to tutorial or office hours for help or hints. This is a tricky problem. It is fine to have someone else show you how to do it before you write it up.

Note: This works for any $t_{i j}$ and any $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$. What we see from this is:

If the graph of

$$
A(\vec{x})=T(\vec{x}-\vec{a})+\vec{b}
$$

is tangent to the graph of F at $\vec{x}=\vec{a}$, then the matrix $T=F^{\prime}(\vec{a})$ must be the matrix of partial derivatives of F evaluated at the point \vec{a} :

$$
F^{\prime}(\vec{a})=\left(\begin{array}{cccc}
\frac{\partial F_{1}}{\partial x_{1}}(\vec{a}) & \frac{\partial F_{1}}{\partial x_{2}}(\vec{a}) & \cdots & \frac{\partial F_{1}}{\partial x_{m}}(\vec{a}) \\
\frac{\partial F_{2}}{\partial x_{1}}(\vec{a}) & \frac{\partial F_{2}}{\partial x_{2}}(\vec{a}) & \cdots & \frac{\partial F_{2}}{\partial x_{m}}(\vec{a}) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial F_{n}}{\partial x_{1}}(\vec{a}) & \frac{\partial F_{n}}{\partial x_{2}}(\vec{a}) & \cdots & \frac{\partial F_{n}}{\partial x_{m}}(\vec{a})
\end{array}\right) .
$$

Therefore, there is only one possible choice for the tangent approximation to $F(\vec{x})$ near the point $\vec{x}=\vec{a}$.

In practice, to check whether a function $F(\vec{x})$ is differentiable at \vec{a} we do the following:

1. Compute the partial derivatives of F. If any of them are undefined at $\vec{x}=\vec{a}$, then F is not differentiable at \vec{a}.
2. If all the partial derivatives of F are defined in some open ball around \vec{a} and continuous at \vec{a}, then F is differentiable at \vec{a}.
3. If neither (1) nor (2) answers the question, then we use limits to check whether the graph of the potential tangent approximation to F near \vec{a} is actually tangent. Because we know the partial derivatives of F at \vec{a}, we know what this tangent approximation would be.

Actually, there may be other things we can do if (1) and (2) don't work. For example, we know that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at \vec{a}, then we can compute the directional derivatives of f at \vec{a} using the gradient ∇f.

Therefore, if we can show that there is some unit vector \vec{u} for which the directional derivative

$$
\frac{\partial f}{\partial \vec{u}}(\vec{a})=\lim _{t \rightarrow 0} \frac{f(\vec{a}+t \vec{u})-f(\vec{a})}{t}
$$

is undefined, then f cannot be differentiable at \vec{a}.
Also, $\vec{F}(\vec{x})=\left\langle F_{1}(\vec{x}), \ldots, F_{n}(\vec{x})\right\rangle$ is differentiable at \vec{a} if and only if all the component functions $F_{i}(\vec{x})$ are. Therefore, if it is easier, we can check the differentiability of F_{1}, \ldots, F_{n} individually.

