Math 14

Winter 2009
Homework Assigned Monday, January 12
For problems (1)-(3), write the function A in the matrix and column vector format.
(1.) Find a function A whose graph is the tangent plane to the graph of $f(x, y)=e^{x}-x y$ at the point $(x, y)=(1,2)$.
(2.) Find a function A giving the position function of a moving object that has the same position and velocity at $t=1$ of an object with position function $\vec{r}(t)=\left\langle t, 1-t^{2}, 2 t\right\rangle$.
(3.)
(a.) Find the tangent approximation A to the function $F(u, v)=\langle\cos u, \sin u, v\rangle$ at the point $(u, v)=(\pi, 1)$.
(b.) What is the range of F ? (Hint: Consider first the x and y components of $F(u, v)$, namely $(\cos u, \sin u)$.)
(c.) What is the range of A ?
(d.) How are the ranges of F and A related?
(4.) Show, using the limit definition of tangent (but NOT using epsilons and deltas) that the graphs of $f(x, y)=x^{2}+y^{2}$ and

$$
A(x, y)=\left(\begin{array}{ll}
4 & 6
\end{array}\right)\binom{x-2}{y-3}+13
$$

are tangent at the point $(x, y)=(2,3)$.

