Math 14

Winter 2009
Monday, February 9: Additional Homework Problems

For these problems, we suppose that D is an x-simple region in the $x y$ plane. We also let γ be the boundary of D, oriented counterclockwise, and let $P(x, y)$ be a continuously differentiable function from \mathbb{R}^{2} to \mathbb{R}. We assume γ is piecewise smooth.
(1.) Give equations to define, and sketch, such a region D. You may have to introduce symbols to denote points, functions, and so forth that are relevant to defining D.
(2.) Find an expression for

$$
\iint_{D} \frac{\partial P}{\partial x} d A
$$

as a single integral. The points, functions, and so forth you introduced in (1) may appear here.
(3.) Compare

$$
\begin{gathered}
\iint_{D} \frac{\partial P}{\partial x} d A \\
\text { to } \quad \int_{\gamma}\langle P, 0\rangle \cdot \vec{n} d s \quad \text { and to } \quad \int_{\gamma}\langle 0, P\rangle \cdot \vec{T} d s
\end{gathered}
$$

