Math 14

Winter 2009
Monday, February 9

For these problems, we suppose that D is a y-simple region in the $x y$ plane. That is, D can be described by the inequalities

$$
\begin{aligned}
a & \leq x \leq b \\
g(x) & \leq y \leq h(x)
\end{aligned}
$$

where g and h are continuous functions. We further assume that g and h are differentiable. We also let γ be the boundary of D, oriented counterclockwise, and let $P(x, y)$ be a continuously differentiable function from \mathbb{R}^{2} to \mathbb{R}.
(1.) Sketch such a region D.
(2.) Show that

$$
\iint_{D} \frac{\partial P}{\partial y} d A=\int_{a}^{b} P(x, h(x))-P(x, g(x)) d x
$$

(3.) Compare

$$
\begin{gathered}
\iint_{D} \frac{\partial P}{\partial y} d A \\
\text { to } \quad \int_{\gamma}\langle P, 0\rangle \cdot \vec{T} d s \quad \text { and to } \quad \int_{\gamma}\langle 0, P\rangle \cdot \vec{n} d s .
\end{gathered}
$$

