Math 14
Winter 2009
Monday, January 12
A Sample $\varepsilon-\delta$ Proof

As an example of a formal $\varepsilon-\delta$ proof, we show that

$$
\lim _{x \rightarrow 2} x^{2}=4
$$

Generally the proof will begin:
Let $\varepsilon>0$ be given.
We must show there is a $\delta>0$ such that

$$
|x-2|<\delta \Longrightarrow\left|x^{2}-4\right|<\varepsilon .
$$

At this point the proof can either proceed "backward," figuring out what δ will work, or "forward," saying, "Let $\delta=* * *$," and then proving that $|x-2|<\delta \Longrightarrow\left|x^{2}-4\right|<\varepsilon$. In either case, δ will probably be expressed in terms of ε.

Proof I:

Let $\varepsilon>0$ be given.
We must show there is a $\delta>0$ such that

$$
|x-2|<\delta \Longrightarrow\left|x^{2}-4\right|<\varepsilon
$$

To see what δ we should pick, let's see how small $x^{2}-4$ is, in general, when x is within δ of 2 . We look at two cases separately.

If $x \geq 2$ and $|x-2|<\delta$ we have

$$
\begin{gathered}
2 \leq x<2+\delta \\
4 \leq x^{2}<4+4 \delta+\delta^{2} \\
0 \leq x^{2}-4<4 \delta+\delta^{2}
\end{gathered}
$$

so in this case, if we choose δ so that

$$
4 \delta+\delta^{2} \leq \varepsilon
$$

we will have

$$
\begin{gathered}
0<x^{2}-4<4 \delta+\delta^{2} \leq \varepsilon \\
\left|x^{2}-4\right|<\varepsilon
\end{gathered}
$$

If $x<2$ and $|x-2|<\delta$ we have

$$
2-\delta<x<2
$$

Provided $\delta<2$ so that $2-\delta$ and x are both positive, we can square everything and get

$$
\begin{gathered}
4-4 \delta+\delta^{2}<x^{2}<4 \\
\delta^{2}-4 \delta<x^{2}-4<0 \\
\left|x^{2}-4\right|<\left|\delta^{2}-4 \delta\right| \leq\left|\delta^{2}\right|+|4 \delta|=\delta^{2}+4 \delta
\end{gathered}
$$

so again, if we choose δ so that

$$
4 \delta+\delta^{2} \leq \varepsilon
$$

we will have

$$
\left|x^{2}-4\right|<4 \delta+\delta^{2} \leq \varepsilon
$$

So we must have $\delta<2$ and $4 \delta+\delta^{2} \leq \varepsilon$. We can make this second inequality hold as long as we make sure that both 4δ and δ^{2} are less than $\frac{\varepsilon}{2}$. This will be guaranteed if we make sure that δ is less than both $\frac{\varepsilon}{8}$ and $\sqrt{\frac{\varepsilon}{2}}$.

Therefore we can choose any positive δ small enough so that

$$
\delta<2 \& \delta<\frac{\varepsilon}{8} \& \delta<\sqrt{\frac{\varepsilon}{2}}
$$

Proof II:

Let $\varepsilon>0$ be given.
We must show there is a $\delta>0$ such that

$$
|x-2|<\delta \Longrightarrow\left|x^{2}-4\right|<\varepsilon
$$

Let $\delta=\sqrt{\varepsilon+4}-2$. [This is the δ from the back of the book. They arrived at it by applying the quadratic formula to the equation $4 \delta+\delta^{2}=\varepsilon$, which they found using reasoning like we used in Proof I.]

Show that

$$
|x-2|<\delta \Longrightarrow\left|x^{2}-4\right|<\varepsilon .
$$

To see this, if $|x-2|<\delta$, we have
$|x-2|<\delta \Longrightarrow 2-\delta<x<2+\delta \Longrightarrow 4-\delta<x+2<4+\delta \Longrightarrow-4-\delta<x+2<4+\delta$
and therefore

$$
|x+2|<|4+\delta|=4+\delta
$$

and we have
$\left|x^{2}-4\right|=|(x+2)(x-2)|=|x+2||x-2|<\delta(4+\delta)=(\sqrt{\varepsilon+4}-2)(\sqrt{\varepsilon+4}+2)=\varepsilon$,
which is what we need.

