Math 14

Winter 2009
Friday, January 9
Differentiability

Definition: If $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and some open ball around \vec{a} is contained in the domain of F (we sometimes phrase this as " F is defined at and near \vec{a} "), then we say F is differentiable at \vec{a} if there is an affine (linear plus constant) function

$$
T(\vec{x})=A(\vec{x}-\vec{a})+\vec{b}
$$

whose graph is tangent to the graph of F at $\vec{x}=\vec{a}$.
Here A is an $n \times m$ matrix whose entries are constants, \vec{x} and \vec{a} are written as column vectors, and \vec{b} is an n-entry column vector.

Example:

Example:

Definition: The graph of T is tangent to the graph of F at $\vec{x}=\vec{a}$ if

$$
\begin{gathered}
T(\vec{a})=F(\vec{a}) ; \\
\lim _{\vec{x} \rightarrow \vec{a}} \frac{F(\vec{x})-T(\vec{x})}{|\vec{x}-\vec{a}|}=\overrightarrow{0} .
\end{gathered}
$$

Theorem: If $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is differentiable at \vec{a} with tangent approximation $T(\vec{x})=A(\vec{x}-\vec{a})+\vec{b}$, then $\vec{b}=F(\vec{a})$ and A is the matrix of partial derivatives of F at the point \vec{a}

$$
\begin{gathered}
F(\vec{x})=\left\langle F_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, F_{n}\left(x_{1}, \ldots, x_{m}\right)\right\rangle ; \\
A=\left(\begin{array}{cccc}
\frac{\partial F_{1}}{\partial x_{1}} & \frac{\partial F_{1}}{\partial x_{2}} & \cdots & \frac{\partial F_{1}}{\partial x_{m}} \\
\frac{\partial F_{2}}{\partial x_{1}} & \frac{\partial F_{2}}{\partial x_{2}} & \cdots & \frac{\partial F_{2}}{\partial x_{m}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial F_{n}}{\partial x_{1}} & \frac{\partial F_{n}}{\partial x_{2}} & \cdots & \frac{\partial F_{n}}{\partial x_{m}}
\end{array}\right)
\end{gathered}
$$

Note that A has one row for each coordinate function of F, and one column for (the partial derivative with respect to) each coordinate of the argument \vec{x}.

Definition: If $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is differentiable at \vec{a} with tangent approximation $T(\vec{x})=A(\vec{x}-\vec{a})+\vec{b}$, then we say

$$
F^{\prime}(\vec{a})=A=\left(\begin{array}{cccc}
\frac{\partial F_{1}}{\partial x_{1}} & \frac{\partial F_{1}}{\partial x_{2}} & \cdots & \frac{\partial F_{1}}{\partial x_{m}} \\
\frac{\partial F_{2}}{\partial x_{1}} & \frac{\partial F_{2}}{\partial x_{2}} & \cdots & \frac{\partial F_{2}}{\partial x_{m}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial F_{n}}{\partial x_{1}} & \frac{\partial F_{n}}{\partial x_{2}} & \cdots & \frac{\partial F_{n}}{\partial x_{m}}
\end{array}\right)
$$

Warning: A function can have partial derivatives at a point and still not be differentiable there.

