Math 14
Winter 2009
Friday, January 9
More About Limits

Something to do if you finish the quiz early: Fill in the missing parts of the following proofs.

Theorem: Suppose that $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is written in terms of its component functions as

$$
F(\vec{x})=\left\langle F_{1}(\vec{x}), F_{2}(\vec{x}), \ldots, F_{n}(\vec{x})\right\rangle,
$$

that the domain of F is an open set A, that \vec{a} is either in A or a boundary point of A, and that the domain of each F_{i} is A. Show that if

$$
\lim _{\vec{x} \rightarrow \vec{a}} F(\vec{x})=\vec{b}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle
$$

then for every i between 1 and n we have

$$
\lim _{\vec{x} \rightarrow \vec{a}} F_{i}(\vec{x})=b_{i} .
$$

Proof: Let i be given. (That is, consider some particular i.) We need to show that for every $\epsilon>0$, there is a $\delta>0$ such that the following is true:

Because $\lim _{\vec{x} \rightarrow \vec{a}} F(\vec{x})=\vec{b}$, we know that for our given ϵ there is some $\bar{\delta}>0$ such that whenever \vec{x} is in A and $\vec{x} \neq \vec{a}$, we have

$$
|\vec{x}-\vec{a}|<\bar{\delta} \Longrightarrow|F(\vec{x})-\vec{b}|<\epsilon
$$

(We say $\bar{\delta}$ because the distance that works for F may or may not be the same δ we are looking for that works for F_{i}.)

If $|F(\vec{x})-\vec{b}|<\epsilon$ then we know that

$$
\left|F_{i}(\vec{x})-b_{i}\right|<\underline{L} .
$$

Therefore we can take

$$
\delta=
$$

Theorem: Suppose that $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is written in terms of its component functions as

$$
F(\vec{x})=\left\langle F_{1}(\vec{x}), F_{2}(\vec{x}), \ldots, F_{n}(\vec{x})\right\rangle
$$

that the domain of F is an open set A, that \vec{a} is either in A or a boundary point of A, and that the domain of each F_{i} is A. Show that if for every i between 1 and n

$$
\lim _{\vec{x} \rightarrow \vec{a}} F_{i}(\vec{x})=b_{i},
$$

then we have

$$
\lim _{\vec{x} \rightarrow \vec{a}} F(\vec{x})=\vec{b}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle
$$

Proof: Let $\epsilon>0$. We need to show that there is a $\delta>0$ such that whenever \vec{x} is in A and $\vec{x} \neq \vec{a}$, we have

$$
|\vec{x}-\vec{a}|<\delta \Longrightarrow|F(\vec{x})-\vec{b}|<\epsilon
$$

We know that

$$
|F(\vec{x})-\vec{b}|=\sqrt{\sum_{i=1}^{n}\left(F_{i}(\vec{x})-b_{i}\right)^{2}} \leq \sum_{i=1}^{n}\left|F_{i}(\vec{x})-b_{i}\right|
$$

so if we can make each $\left|F_{i}(\vec{x})-b_{i}\right|$ less than $\frac{\epsilon}{n}$, we will have succeeded.
We know that for each i, there is a δ_{i} such that the following is true:

Therefore we can take

$$
\delta=
$$

Theorem: Suppose that $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is written in terms of the components of its argument as

$$
F(\vec{x})=F\left(\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle\right),
$$

that the domain of F is an open set A, and that $\vec{a}=\left\langle a_{1}, a_{2}, \ldots a_{m}\right\rangle$ is either in A or a boundary point of A. Suppose also that if \vec{a} is a boundary point of A, there is some open ball B around \vec{a} such that every point of B except \vec{a} is in A. Show that if

$$
\lim _{\vec{x} \rightarrow \vec{a}} F(\vec{x})=\vec{b}
$$

then for every i between 1 and m we have

$$
\lim _{x_{i} \rightarrow a_{i}} F\left(\left\langle a_{1}, a_{2}, \ldots, a_{i-1}, x_{i}, a_{I+1}, \ldots, a_{m}\right\rangle\right)=\vec{b}
$$

(That is, as $\vec{x} \rightarrow \vec{a}$ along the line given by $x_{1}=a_{1}, x_{2}=a_{2}, \ldots, x_{i-1}=$ $a_{i-1}, x_{i+1}=a_{i+1}, \ldots x_{m}=a_{m}$, we have $F(\vec{x}) \rightarrow \vec{b}$.)

Proof:

Question for the very careful: Why did we assume that if \vec{a} is not in the domain of F, there is an open ball B around \vec{a} such that everything in B except \vec{a} is in the domain of F ?

Hint: What if the domain of F consists of all points on the $x y$-plane that are not on the x-axis and we know

$$
\lim _{(x, y) \rightarrow(0,0)} F(x, y)=(2,3,2) ?
$$

Can we conclude that

$$
\lim _{x \rightarrow 0} F(x, 0)=(2,3,2) ?
$$

Why or why not?

