Math 14
Winter 2009
Homework Due Wednesday, February 4

For problems (1)-(3), define $\vec{F}(x, y)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)$.
(1.) Show that \vec{F} satisfies the "mixed partials" test. That is, if $\vec{F}=$ (P, Q), then $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$.
(2.) Find the line integral of \vec{F} around the counterclockwise oriented circle of radius r around the origin. (Note that the answer is not zero.)
(3.) Let $\vec{v}=(a, b)$. Find a vector \vec{v}_{\perp} normal to \vec{v}, having the same length as (a, b), so that if you were standing on the $x y$-plane facing in the direction given by \vec{v}, the vector \vec{v}_{\perp} would be pointing toward your right.
(4.) Here is a different formulation of line integral: If we consider a differential vector in the direction of the curve γ parametrized by the function $\vec{r}(t)=(x(t), y(t))$ to be

$$
d \vec{r}=\vec{T} d s=\langle d x, d y\rangle=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle d t
$$

where \vec{T} is the unit tangent vector, then we can consider a differential vector in the direction normal to the curve γ (pointing directly across γ from left to right as you move along γ) to be

$$
d \vec{r}_{\perp}=\vec{n} d s=\langle d y,-d x\rangle=\left\langle y^{\prime}(t),-x^{\prime}(t)\right\rangle d t
$$

where \vec{n} is the unit normal vector pointing to the right. (Note, this is NOT the same unit normal vector \vec{N} appearing in the expression for acceleration, because \vec{N} always points toward the inside of the curve, whereas \vec{n} always points toward the right, regardless of how γ curves.)

Then, just as

$$
\int_{\gamma} \vec{F} \cdot \vec{T} d s=\int_{a}^{b} \vec{F}(x(t), y(t)) \cdot\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle d t
$$

is the path integral of the tangential component of \vec{F} in the direction of a curve γ parametrized by the function $\vec{r}(t)=\langle x(t), y(t)\rangle$ for $a \leq t \leq b$,

$$
\int_{\gamma} \vec{F} \cdot \vec{n} d s=\int_{a}^{b} \vec{F}(x(t), y(t)) \cdot\left\langle y^{\prime}(t),-x^{\prime}(t)\right\rangle d t
$$

is the path integral of the normal component of \vec{F} in the left-to-right direction across γ.

Find the path integral of the normal component of \vec{F} across the counterclockwise oriented circle of radius r around the origin if:
(a.) $\vec{F}(x, y)=\langle x, y\rangle$.
(b.) $\vec{F}(x, y)=\langle-y, x\rangle$.
(c.) $\vec{F}(x, y)=\left\langle\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right\rangle$.

