Math 14

Winter 2009

Homework Due Wednesday, February 4

For problems (1)-(3), define $\vec{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$. (1.) Show that \vec{F} satisfies the "mixed partials" test. That is, if $\vec{F} = (P,Q)$, then $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$.

(2.) Find the line integral of \vec{F} around the counterclockwise oriented circle of radius r around the origin. (Note that the answer is not zero.)

(3.) Let $\vec{v} = (a, b)$. Find a vector \vec{v}_{\perp} normal to \vec{v} , having the same length as (a, b), so that if you were standing on the *xy*-plane facing in the direction given by \vec{v} , the vector \vec{v}_{\perp} would be pointing toward your right.

(4.) Here is a different formulation of line integral: If we consider a differential vector in the direction of the curve γ parametrized by the function $\vec{r}(t) = (x(t), y(t))$ to be

$$d\vec{r} = T ds = \langle dx, dy \rangle = \langle x'(t), y'(t) \rangle dt$$

where \vec{T} is the unit tangent vector, then we can consider a differential vector in the direction normal to the curve γ (pointing directly across γ from left to right as you move along γ) to be

$$d\vec{r}_{\perp} = \vec{n} \, ds = \langle dy, \, -dx \rangle = \langle y'(t), \, -x'(t) \rangle \, dt$$

where \vec{n} is the unit normal vector pointing to the right. (Note, this is NOT the same unit normal vector \vec{N} appearing in the expression for acceleration, because \vec{N} always points toward the inside of the curve, whereas \vec{n} always points toward the right, regardless of how γ curves.)

Then, just as

$$\int_{\gamma} \vec{F} \cdot \vec{T} \, ds = \int_{a}^{b} \vec{F}(x(t), \, y(t)) \cdot \langle x'(t), \, y'(t) \rangle \, dt$$

is the path integral of the tangential component of \vec{F} in the direction of a curve γ parametrized by the function $\vec{r}(t) = \langle x(t), y(t) \rangle$ for $a \leq t \leq b$,

$$\int_{\gamma} \vec{F} \cdot \vec{n} \, ds = \int_{a}^{b} \vec{F}(x(t), \, y(t)) \cdot \langle y'(t), \, -x'(t) \rangle \, dt$$

is the path integral of the normal component of \vec{F} in the left-to-right direction across γ .

Find the path integral of the normal component of \vec{F} across the counterclockwise oriented circle of radius r around the origin if:

(a.)
$$\vec{F}(x,y) = \langle x, y \rangle$$
.
(b.) $\vec{F}(x,y) = \langle -y, x \rangle$.
(c.) $\vec{F}(x,y) = \left\langle \frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2} \right\rangle$.