
Matrices and Linear Functions

1 Matrices and Vectors

An m× n matrix is a rectangular array of mn numbers:

A =


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
...

am1 am2 am3 · · · amn

 . (1)

Another way to write this is A = (aij).
An n × 1 vector is just a column of numbers, called a column vector. For

these matrices there is no need for two subscripts on the entries, and if A is an
n× 1 matrix we just write

A =


a1

a2

a3

...
an

 .

A column vector can be identified with a vector in Rn in the obvious way:
a1

a2

a3

...
an

←→ (a1, a2, a3, . . . , an).

Likewise, any vector in Rn can be identified with a column vector.
From now on we will use the above identification and think of every x ∈ Rn

as a column vector. Really, all we’re doing is writing our vectors ”standing
up.” Since we have vector addition, scalar multiplication and the dot product in
Rn we have the same operations on column vectors (e.g. to multiply a column
vector by a scalar α just multiply all its entries by α).
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Our identification of Rn with the set of column vectors also gives us some
shorthand for writing matrices. Using the matrix A of (1) we set

ai =


a1i

a2i

a3i

...
ami

 .

Then we can write
A =

(
a1 a2 a3 · · · an

)
. (2)

With this notation it is easy to describe the multiplication of a matrix by a
column vector. Let A be an m× n matrix and let x ∈ Rn (remember, think of
x as a column vector). Write A as in (2) and let

x =


x1

x2

x3

...
xn

 .

Then we define

Ax = x1a1 + x2a2 + x3a3 + · · ·+ xnan.

That is, the result of the multiplication of x by A is a column vector in Rm, and
we obtain this vector by forming the weighted sum of the columns of A using
the entries of x as the weights (note that in order for Ax to make sense x must
have as many entries as A has columns!). Matrix multiplication has two very
nice properties, which we now illustrate.

Let A be an m× n matrix and let x,y ∈ Rn, α ∈ R. Then

A(x + y) = Ax + Ay

A(αx) = α(Ax).

We only prove the first equality. The proof of the second follows the same lines.
Write

x =


x1

x2

x3

...
xn

 ,y =


y1

y2

y3

...
yn


so that

x + y =


x1 + y1

x2 + y2

x3 + y3

...
xn + yn

 .
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Writing A as in (2), the definition above and properties of vector addition and
scalar multiplication give us

A(x + y) = (x1 + y1)a1 + (x2 + y2)a2 + (x3 + y3)a3 + · · ·+ (xn + yn)an

= x1a1 + y1a1 + x2a2 + y2a2 + x3a3 + y3a3 + · · ·+ xnan + ynan

= x1a1 + x2a2 + x3a3 + · · ·+ xnan + y1a1 + y2a2 + y3a3 + · · ·+ ynan

= Ax + Ay.

2 Linear Functions and Matrix Multiplication

We can now define linear functions. Our primary reason for doing so is to
motivate the general definition of matrix multiplication, which at first sight can
seem unnecessarily complicated (I guess my point is that the complication is
actually necessary!). A function f : Rn → Rm is called a linear function if there
is an m× n matrix A so that

f(x) = Ax.

Hence, every m×n matrix A gives us a linear function lA : Rn → Rm defined
by

lA(x) = Ax.

The letter l is used to suggest the name for this function: left multiplication by
A.

By attempting to compose two linear functions we will be led to the notion
of matrix multiplication. We start with two linear functions f : Rn → Rm,
g : Rm → Rl given by the matrices B and A, respectively. Thus, B is an m× n
matrix and A is l×m. We’ll compute the value of g◦f(x) for any vector x ∈ Rn.
First let’s write

A =
(

a1 a2 a3 · · · am

)
and

B =
(

b1 b2 b3 · · · bn

)
and

x =


x1

x2

x3

...
xn

 .

Then

g ◦ f(x) = g(f(x))
= g(Bx)
= g(x1b1 + x2b2 + x3b3 + · · ·+ xnbn)
= A(x1b1 + x2b2 + x3b3 + · · ·+ xnbn)
= x1(Ab1) + x2(Ab2) + x3(Ab3) + · · ·+ xn(Abn).
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So, if we define a new matrix C by

C =
(

Ab1 Ab2 Ab3 · · · Abn

)
(3)

(i.e. the columns of C are the columns of B multiplied by A) then we may
continue the series of equalities above with

= Cx.

That is, the composition of two linear functions is another linear function and
we can compute the matrix of the composition from the matrices of the functions
being composed. This is our motivation for defining the product of the matrices
A and B, AB, by

AB = C

where C is as given in (3).
It is important to note that in order for the product of two matrices to be

defined their dimensions must agree in a certain way. The second dimension of
A must equal the first dimension of B (i.e. A must be l ×m and B must be
m × n). Thus, even though AB might make sense it is possible that BA does
not. For example, if A is 3 × 5 and B is 5 × 4 then AB makes sense (and is
3× 4) but BA is meaningless.

Another thing to note is that even if we have two matrices A and B so that
AB and BA both make sense, it is often the case that AB 6= BA. A simple
example is if A is 3×5 and B is 5×3, for then AB is 3×3 but BA is 5×5. But
even if AB and BA are the same size they can be different. To see this, find
2× 2 matrices A and B so that AB 6= BA. Do the same with 3× 3 matrices.

There’s a whole lot more that can be said about matrices and linear maps.
So much, in fact, that there is an entire subject dedicated to their study: linear
algebra.
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