
LINEAR TRANSFORMATIONS

1. Matrices and linear transformations

Before defining the notion of linear transformation, we begin with some familiar examples
((i) and (ii) below) and also an example ((iii) below) that is probably not familiar to you.

1.1. Examples. (i) A linear transformation L : R→ R is any function of the form L(x) = mx
where m is a constant. The graph of L is a line through the origin.

(ii) A linear function L : R2 → R is any function of the form L(x, y) = ax + by where a
and b are constants. The graph of L is a plane through the origin. Denoting elements of R2

as column matrices

x =

[
x
y

]
, we have

L(x, y) =
[
a b

] [x
y

]
= Ax

where A is the matrix
[
a b

]
.

(iii) Let

A =

[
2 1 4
5 6 1

]
.

Writing

x =

xy
z

 ∈ R3

define

L(x, y, z) = Ax =

[
2 1 4
5 6 1

]xy
z

 =

[
2x + y + 4z
5x + 6y + z

]
.

We can also write

L(x, y, z) = (2x + y + 4z, 5x + 6y + z).

Note that the expression Ax in the third example makes sense because A is a 2× 3 matrix
and x is a 3× 1 matrix. The resulting expression is a 2× 1 matrix (a column) representing an
element of R2.

Definition 1.1. A linear transformation L from Rn to Rm is any function of the form L(x) =
Ax where A is an m×n matrix. (Here x denotes elements of Rn, i.e., n× 1 column matrices.)
The matrix A is called the representing matrix of L.
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1.2. Examples. (i). Let A be a 1 × 1 matrix, e.g., A = [5]. The corresponding linear trans-
formation is given by L(x) = [5][x] = [5x]. In other words, L is the function L(x) = 5x.
(Compare with example 1.1(i).)

(ii) Let A =
[
3 4

]
. Then the corresponding linear transformation L has domain R2 and

image R. L is given by

L(x, y) =
[
3 4

] [x
y

]
= [3x + 4y].

I.e., L(x, y) = 3x+ 4y. Note that the graph of L, given by z = 3x+ 4y, is a plane through the
origin in R3. More generally, the graph of any linear transformation L : R2 → R is a plane
through the origin in R3. (Compare with example 1.1(ii).)

(iii) Let

A =

[
2 3
1 −2

]
The corresponding linear transformation has domain R2 (since A has 2 columns) and range
R2 (since A has two rows). It is given by

L(x, y) =

[
2 3
1 −2

] [
x
y

]
=

[
2x + 3y
x− 2y

]
In other words, L(x, y) = (2x + 3y, x− 2y).

(Aside: We can’t graph L since the domain and range are both 2-dimensional. The graph
would lie in R4, which we are unable to draw. However, if we could draw in four dimensions, the
graph would be a two-dimensional plane sitting in R4, in the same way that a one-dimensional
line sits in R3.)

Note that each of the component functions 2x + 3y and x− 2y is given by multiplying each
variable by a constant and adding. (I.e., they are first degree polynomials without constant
terms.) This is the characteristic feature of linear transformations.

1.3. Examples. (i) L(x, y) = (x2 + y, xy) is not linear, because it has an x2 term and also
because it has a term xy.

(ii) L(x, y) = (2 + x− y, x + y) is not linear because of the constant term 2.

(iii) L(x, y) = (2x + 5y, x− y) is linear. Its representing matrix is given by

A =

[
2 5
1 −1

]
1.4. Example. Let H : R2 → R be given by H(u, v) = 2u + 3v, i.e.,

H(x, y) =
[
2 3

] [x
y

]
= A

[
x
y

]
where A =

[
2 3

]
. Let L : R2 → R2 be given by L(x, y) = (x + y, x− y), i.e.,

L(x, y) =

[
1 1
1 −1

] [
x
y

]
= B

[
x
y

]
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where B =

[
1 1
1 −1

]
. Note that the composition H ◦ L : R2 → R is given by

H ◦ L(x, y) = H(L(x, y)) = A(B

[
x
y

]
) = (AB)

[
x
y

]
=
[
2 3

] [1 1
1 −1

] [
x
y

]
=
[
5 −1

] [x
y

]
.

(In the second equality, we used the fact that matrix multiplication is associative, even though
it’s not commutative.)

More generally:

1.5. Theorem. Suppose H : Rm → Rp and L : Rn → Rm are linear transformations with
representing matrices A and B, respectively. Then H ◦ L is a linear transformation with
representing matrix AB.

1.6. Exercise. Let H : R3 → R2 be given by H(u, v, w) = (3u + 2v + w, u + 4v + w) and let
L : R2 → R3 be given by L(x, y) = x + y, 5x + y, x + 2y).

(1) Write down the representing matrix for H.
(2) Write down the representing matrix for L.
(3) Use the theorem to find the representing matrix for H ◦ L.
(4) Write down the expression for H ◦ L in the form H ◦ L(x, y) = ( , ).

1.7. Tangent approximations of functions. A primary reason that the derivative at a
point x0 of a function f : R → R is so useful is that it enables us to approximate f near x0
by its tangent line y − y0 = m(x − x0) where m = f ′(x0). This line is of course a translate
of the line through the origin given by y = mx, which is the graph of the linear function
L(x) = mx. As we saw in the document “Derivatives as matrices”, the derivative a function
in higher dimensions is a matrix A. Let L be the linear transformation with matrix A. The
tangent approximation of f near x0 is given by y − y0 = A(x− x0), which is just a translate
of the graph of the linear transformation L. Thus an understanding of the geometric behavior
of linear functions enables us to get an approximate understanding of more general functions.
We will discuss the geometry of linear transformations in the next section.

1.8. Example. Let L : R2 → R2 be given by L(x, y) = (2x + 3y, 4x + y). Note that L is a
linear transformation. Computing the derivative of L, we get

L′(x, y) =

[
2 3
4 1

]
.

Note that this is precisely the representing matrix of the linear transformation L! More gen-
erally, the derivative of any linear transformation L at an arbitrary point is always the repre-
senting matrix of L. This is consistent with the idea of the derivative giving the best linear
approximation (the tangent approximation) to a function near a point. If the function is
already linear, the tangent “approximation” is exact.

2. Geometry of linear transformations

In this section we will consider for illustration only linear transformations L : R2 → R2.
(The behavior is similar in other dimensions but this is all we’ll look at.) Before reading
this section, you should read the discussion of more general transformations T : R2 → R2

in Stewart: last paragraph of 1064 and all of page 1065. As in Stewart, we will use u, v for
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the independent variables and x, y for the dependent variables. I.e., we write (x, y) = L(u, v).
You’re more used to using x, y for the independent variables. The reason for switching the
roles is that it will be helpful when we talk about change of variables in integrals in Section
15.10.

Recall that a linear transformation L : R2 → R2 is expressed as multiplication by a 2 × 2
matrix

L(u, v) =

[
a b
c d

]
.

It’s useful to compute

L(1, 0) =

[
a b
c d

] [
1
0

]
=

[
a
c

]
and

L(0, 1) =

[
a b
c d

] [
0
1

]
=

[
b
d

]
.

Thus L carries the coordinate vectors (1, 0) and (0, 1) to the vectors given by the two columns
of the representing matrix. Moreover, the unit square is mapped to the parallelogram spanned
by the two column vectors.

2.1. Example. Let L(u, v) =

[
2 0
0 3

] [
u
v

]
. Writing

[
x
y

]
= L(u, v), we have

x = 2u y = 3v.

This transformation expands horizontal distances by a factor of 2 and expands vertical distances
by a factor of 3. So, for example, squares in the (u, v) plane are mapped to rectangles in (x, y)
plane. The area of the image rectangle is 6 times as big as that of the starting square. (You’ll
notice that the determinant of the representing matrix of L is also 6.)

2.2. Example. Let L(u, v) =

[
1 1
0 1

] [
u
v

]
. Writing

[
x
y

]
= L(u, v), we have

x = u + v, y = v.

Check that the unit square 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 is mapped to the parallelogram in the
(x, y)-plane spanned by the vectors 〈1, 0〉 and 〈1, 1〉. This parallelogram has the same area (=1)
as the unit square; it’s just skewed. (Compute the determinant of the representing matrix,
and you’ll begin noticing a pattern.)

2.3. Theorem. Let L : R2 → R2 be a linear transformation and assume that the determinant
of the representing matrix is nonzero. Then L maps lines in the (u, v) plane to lines in the
(x, y) plane. Moreover, parallel lines go to parallel lines.

We illustrate the theorem with an example.
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2.4. Example. L(u, v) =

[
1 2
3 4

] [
u
v

]
. Writing

[
x
y

]
= L(u, v), we have

x = u + 2v y = 3u + 4v.

Consider the line in the (u, v) plane through the point (u0, v0) with direction vector 〈a, b〉. (Here
a and b are constants. The slope of the line is b

a if a 6= 0.) This line is given parametrically by

u = u0 + at, v = v0 + bt.

The image is then given by

x = u + 2v = (u0 + at) + (2v0 + 2bt) = (u0 + 2v0) + (a + 2b)t.

y = 3u + 4v = (3u0 + 3at) + (4v0 + 4bt) = (3u0 + 4v0) + (3a + 4b)t.

I.e., in vector notation

〈x, y〉 = 〈u0 + 2v0, 3u0 + 4v0〉+ t〈a + 2b, 3a + 4b〉.
Thus all lines in the direction 〈a, b〉 get mapped to lines with direction vector 〈a+ 2b, 3a+ 4b〉
E.g., the line u = 2 + t, v = 1 + 5t is mapped to the line x = 4 + 11t, y = 10 + 23t.

Linear transformations L(u, v) = A

[
u
v

]
have many special properties that we list below. We

are assuming that the determinant of the representing matrix A is non-zero. In cases where
the determinant is zero, the entire image collapses to a line in the (x, y) plane (or to the single
point 0 if all entries of A are zero).

• Parallel lines in the (u, v) plane go to parallel lines in (x, y) plane (as already noted).
• All parallelograms in the (u, v) plane are mapped to parallelograms in the (x, y) plane.

(Moreover as already noted: the unit square 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 is mapped to the
parallelogram spanned by the two vectors making up the columns of the matrix A.)
• Circles go to ellipses.
• All areas are multiplied by |det(A)|. E.g., if det(A) = −5, then every region in the

(u, v) plane is mapped to some region in the (x, y) plane that is 5 times as large.

The last property above will be especially important when we discuss change of variables in
multiple integrals.


