Math 13 - Winter 2014

Homework 7

Due Wednesday, 26 Feb. 2014.

- Except for problems that are stated explicitly, all problems are from Stewart Multivariable Calculus, 7th Edition.
- Please show all of your work (writing a list of answers is not sufficient).
- Please indicate the people you worked with.
- Please staple your pages together.

1. Section 16.3 \# 28
2. Section $16.4 \# 27$
3. Match the equations with the graphs in Figures 1, 2, 3, and 4 on the next 4 pages. For each, determine which families of grid curves have u constant, and which have v constant.
(a) $\mathbf{r}(u, v)=\cos v \mathbf{i}+\sin (v) \mathbf{j}+u \mathbf{k}$
(b) $\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin (v) \mathbf{j}+u \mathbf{k}$
(c) $\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin (v) \mathbf{j}+v \mathbf{k}$
(d) $\mathbf{r}(u, v)=u^{3} \mathbf{i}+u \sin (v) \mathbf{j}+u \cos v \mathbf{k}$
4. Find an equation of the tangent plane to the parametric surface $\mathbf{r}(u, v)=u^{2} \mathbf{i}+\left(u-v^{2}\right) \mathbf{j}+v^{2} \mathbf{k}$ at the point $(1,0,1)$.
5. One parametric representation for the part of the cylinder $x^{2}+z^{2}=a^{2}$ that lies in the cylinder $x^{2}+y^{2}=a^{2}$ and in the first octant is $\mathbf{r}(u, v)=u \mathbf{i}+v \mathbf{j}+\sqrt{a^{2}-u^{2}} \mathbf{k}$, with $0 \leq u^{2}+v^{2} \leq a^{2}$. Find another parameterization for the same surface.
6. Section 16.6 \# 64(a).

Figure 1

Figure 2

4

Figure 3

Figure 4

