Math 13: Written Homework \#7. Due Monday, February 25, 2013.

1. ($\S 16.4, \# 22$) Let D be the region bound by a simple positively oriented closed path C in the $x y$-plane. Use Green's Theorem to prove that the coordinates (\bar{x}, \bar{y}) of the center of mass of D (assuming D is a lamina of constant density) are given by

$$
\bar{x}=\frac{1}{2 A} \int_{C} x^{2} d y \quad \text { and } \quad \bar{y}=-\frac{1}{2 A} \int_{C} y^{2} d x
$$

where A is the area of D.
2. ($\S 16.5, \# 20)$ Is there a smooth vector field \mathbf{G} on \mathbf{R}^{3} such that $\boldsymbol{\nabla} \times \mathbf{G}=\left\langle x y z,-y^{2} z, y z^{2}\right\rangle$? Justify your assertions.
3. Suppose that D is a subset of \mathbf{R}^{3} and that f is a scalar valued function on D while \mathbf{F} is a vector field on D. Assuming both f and the components of \mathbf{F} have continuous partial derivatives, show that

$$
\operatorname{div}(f \mathbf{F})=f \operatorname{div}(\mathbf{F})+\mathbf{F} \cdot \boldsymbol{\nabla} f
$$

4. ($\S 16.6, \# 24)$ Find a parametric representation for the surface which is the part of the sphere $x^{2}+y^{2}+z^{2}=16$ which lies between the planes $z=-2$ and $z=2$.
5. ($\S 16.6, \# 26)$ Find a parametric representation of the part of the plane $z=x+3$ which lies inside the cylinder $x^{2}+y^{2}=1$.
6. ($\S 16.6, \# 36)$ Let $\mathbf{r}(u, v)=\langle\sin u, \cos u \sin v, \sin v\rangle$. Find an equation for the tangent plane to the surface parameterized by \mathbf{r} when $u=\pi / 6$ and $v=\pi / 6$.
