MATH 13. Multivariable Calculus. Written Homework 1.

Due on Monday, 1/14/13.

1. Consider the following limit:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2} \sin \left(x^{2}\right)}{x^{4}+y^{4}} .
$$

If it exists, find its value. Otherwise explain why it doesn't exits.
2. Evaluate

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \sqrt{\frac{k}{n^{3}}}
$$

by realizing it as a limit of Riemann sums.
3. \#5 (in section 15.1) from page 1005 in our text.
4. If k is a constant function, $f(x, y)=k$, and $R=[a, b] \times[c, d]$, show that

$$
\iint_{R} k d A=k(b-a)(d-c) .
$$

5. Show that

$$
0 \leq \iint_{R} \sin \pi x \cos \pi y d A \leq \frac{1}{32},
$$

where $R=\left[0, \frac{1}{4}\right] \times\left[\frac{1}{4}, \frac{1}{2}\right]$ (Hint : Use the result of problem 4 and equation (9) on page 1005 of the text.)
6. In evaluating a double integral over a region D , a sum of iterated integrals was obtained as follows:

$$
\iint_{D} f(x, y) d A=\int_{0}^{2} \int_{0}^{\sqrt{y}} f(x, y) d x d y+\int_{2}^{4} \int_{y-2}^{\sqrt{y}} f(x, y) d x d y .
$$

Sketch the region D and express the double integral as an iterated integral with reversed order of integration.

