- 1. Find the centroid of the top half of the region enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 2. Let S be the boundary of the solid region R in \mathbb{R}^3 bounded by the paraboloids $z = 18 - x^2 - y^2$ and $z = x^2 + y^2$. Find the surface integral of $\mathbf{F} = (0, 0, z^2)$ over S, where S is oriented by outward-pointing normals.
- 3. Let C be the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$, oriented counterclockwise. Find the line integral $\oint_C \mathbf{F} \cdot d\mathbf{s}$, where $\mathbf{F} = (\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2})$. (Note: Green's theorem does not hold for the entire region within C since the vector field is not defined throughout this region.)
- 4. For each of the two vector fields below, either find a function f such that $\mathbf{F} = \nabla f$, or explain why no such function f exists.
 - (a) $\mathbf{F}(x, y, z) = y^2 \mathbf{i} + 2xy \mathbf{j} + xz \mathbf{k}$

 - (b) $\mathbf{F}(x,y) = (3x^2y + y^2)\mathbf{i} + (x^3 + 2xy)\mathbf{j}$ (c) Evaluate $\int_{\mathbf{x}} y^2 dx + 2xy dy + xz dz$, where \mathbf{x} is the line segment from (0,0,0) to (1, 1, 1).
 - (d) Let \mathbf{F} be as in part (b). Find the line integral of \mathbf{F} along the portion of the circle $r = \sqrt{2}$, oriented clockwise, from $(\sqrt{2}, 0)$ to (-1, 1).
- 5. Evaluate $\iiint_S z \, dV$ where $S = \{(x, y, z) : a^2 \le x^2 + y^2 + z^2 \le b^2, z \ge 0\}$ is the region bounded by the plane z = 0 and the top halves of the spheres of radius a and b. (Assume a < b.)