1. Find the centroid of the top half of the region enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
2. Let S be the boundary of the solid region R in \mathbf{R}^{3} bounded by the paraboloids $z=18-x^{2}-y^{2}$ and $z=x^{2}+y^{2}$. Find the surface integral of $\mathbf{F}=\left(0,0, z^{2}\right)$ over S, where S is oriented by outward-pointing normals.
3. Let C be the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$, oriented counterclockwise. Find the line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{s}$, where $\mathbf{F}=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)$. (Note: Green's theorem does not hold for the entire region within C since the vector field is not defined throughout this region.)
4. For each of the two vector fields below, either find a function f such that $\mathbf{F}=\nabla f$, or explain why no such function f exists.
(a) $\mathbf{F}(x, y, z)=y^{2} \mathbf{i}+2 x y \mathbf{j}+x z \mathbf{k}$
(b) $\mathbf{F}(x, y)=\left(3 x^{2} y+y^{2}\right) \mathbf{i}+\left(x^{3}+2 x y\right) \mathbf{j}$
(c) Evaluate $\int_{\mathbf{x}} y^{2} d x+2 x y d y+x z d z$, where \mathbf{x} is the line segment from $(0,0,0)$ to $(1,1,1)$.
(d) Let \mathbf{F} be as in part (b). Find the line integral of \mathbf{F} along the portion of the circle $r=\sqrt{2}$, oriented clockwise, from $(\sqrt{2}, 0)$ to $(-1,1)$.
5. Evaluate $\iiint_{S} z d V$ where $S=\left\{(x, y, z): a^{2} \leq x^{2}+y^{2}+z^{2} \leq b^{2}, z \geq 0\right\}$ is the region bounded by the plane $z=0$ and the top halves of the spheres of radius a and b. (Assume $a<b$.)
