1. Let $T(x, y, z)=x^{3}+y^{4}-x y z^{2}$. Determine whether T is increasing or decreasing at the point $(1,-2,1)$ in the direction of the vector $\mathbf{u}=(1 / \sqrt{3},-1 / \sqrt{3},-1 / \sqrt{3})$.
2. The level surface $G(x, y, z)=(x-2)^{4}+(y-2)^{4}+(z-1)^{2}=3$ and graph of $f(x, y)=$ $4-x^{2}-y^{2}$ are two surfaces which intersect at the point $(1,1,2)$. Determine whether or not they are tangent at that point, that is, whether they have the same tangent plane.
3. Find the area of the region enclosed by the curve $r^{2}=4 \cos 2 \theta$. (The curve looks roughly like ∞, with the center point positioned at the orgin.)
4. Evaluate $\int_{0}^{4} \int_{\sqrt{y}}^{2} e^{x^{3}} d x d y$.
5. Let W be the region bounded below by the paraboloid $z=x^{2}+y^{2}$ and above by the plane $z=2 y$. Set up an iterated integral which gives the value of the triple integral $\iiint_{W} x y z d V$. You do not need to evaluate the iterated integral, but do find all the limits of integration.
6. Let D be the region consisting of all the points (x, y) where $1 \leq x^{2}+y^{2} \leq 2$ and $y \geq 0$. Evaluate the double integral $\iint_{D}\left(1+x^{2}+y^{2}\right) d A$.
7. Consider the vector field $\mathbf{F}(x, y, z)=\left(2 x, 3 y^{2} z, y^{3}+\sin z\right)$.
(a) Compute the curl, $\nabla \times \mathbf{F}$.
(b) Compute $\operatorname{div} \mathbf{F}$.
8. Consider the path $\mathbf{c}(t)=(\sin (5 t), \sqrt{3} \sin (5 t), 2 \cos (5 t))$. For which values of α, β, γ is $\mathbf{c}(t)$ a flowline for the vector field $\mathbf{F}(x, y, z)=(\alpha z, \beta z, \gamma x)$?
