Math 13 Worksheet \#19: Stokes' Theorem

(1) Verify Stokes' Theorem for the vector field $\boldsymbol{F}(x, y, z)=<-y, x, e^{z}>$ on the surface defined by $S=\left\{(x, y, z): z=1-x^{2}-y^{2}, x^{2}+y^{2} \leq 1\right\}$, with outward unit normal vector.
(2) Use Stokes' Theorem to evaluate to evaluate the integral of the vector field $\boldsymbol{F}(x, y, z)=<$ $e^{x y z},-x y^{2} z, x y z^{2}>$ around the curve C given by $z^{2}+y^{2}=9$ in the plane $x=5$ and transversed in the counterclockwise direction when viewed from the right (i.e. where $x>5$.)
(3) Evaluate $\iint_{S} \operatorname{curl} \boldsymbol{F} \cdot \boldsymbol{n} d S$, where S is the cap of the unit sphere that lies below the $x y$-plane and inside the cylinder $x^{2}+y^{2}=\frac{1}{9}$ with outwards-pointing normal vector and where $\boldsymbol{F}(x, y, z)=<-y z^{2}, x z^{2}, 3^{-x y z}>$.
(4) For each of the following problems explain why Stokes' Theorem does not apply.
(a) S is the pyramid with vertices at $(0,0,6),(2,0,0),(-2,0,0),(0,3,0)$, and $(0,-3,0)$.
(b) $\boldsymbol{F}(x, y, z)=<\ln (x y+1)+5^{x} 3^{y} 2^{z}, 4 x z^{2}>$, and C is the boundary of the square in the plane $z=6$ and with vertices $(2,0,6),(-2,0,6),(2,4,6)$, and $(-2,4,6)$.

