Math 13 Worksheet \#17: Surface integrals of vector fields

(1) True or false:
(a) If $\boldsymbol{F}(x, y, z)$ is defined on an open region containing a smooth surface S, then $\int_{S} \boldsymbol{F}(x, y, z) \cdot \boldsymbol{n} d S$ measures the flow through the surface S in the direction \boldsymbol{n} determined by the field \boldsymbol{F}.
(b) In computing $\int_{S} \boldsymbol{F} \cdot \boldsymbol{n} d S$, the direction of the normal vector is irrelevant.
(c) In computing $\int_{S} \boldsymbol{F} \cdot \boldsymbol{n} d S$ with \boldsymbol{n} pointing in the correct direction, we could use a scalar multiple of \boldsymbol{n}, since the length will cancel in the $d S$ term.
(2) Find the flux of $\boldsymbol{F}(x, y, z)=<-x z,-y z, z^{2}>$ through the surface S where S is the cone with equation $z=\sqrt{x^{2}+y^{2}}$ between $z=2$ and $z=4$ with \boldsymbol{n} pointing outward.
(3) Find the flux of $\boldsymbol{F}(x, y, z)=<x z, 5 z, y^{2}>$ through the surface S where S is the region of the plane $12 x-9 y+3 z=20$, where $2 \leq x \leq 3$ and $5 \leq y \leq 10$, with n pointing upward.
(4) Suppose an electric field is given by $\boldsymbol{E}(x, y, z)=<2 y, 2 x y, y z>$. Compute the flux $\int_{S} \boldsymbol{E} \cdot \boldsymbol{n} d A$ of the field through the unit cube $[0,1] \times[0,1] \times[0,1]$.

